级数收敛的必要条件有哪些
发布网友
发布时间:2022-04-23 19:39
我来回答
共5个回答
好二三四
时间:2022-07-30 09:51
级数收敛的必要条件:通项an趋于0。一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。
级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。
热心网友
时间:2023-09-24 08:16
级数收敛的必要条件是通项an趋于0。
一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。
如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法(和一个知道的收敛级数比较)。例如an=1/n,通项趋于0,但是发散。
扩展资料:
收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛。
级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:
(1)一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;
(2)另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。
参考资料:百度百科——收敛级数
热心网友
时间:2023-09-24 08:16
最常考的就是“级数通项的极限为0”。
其他必要条件应该还很多,说不全的。
柯西收敛准则是充分必要条件
热心网友
时间:2023-09-24 08:17
级数收敛的必要条件如图所示
热心网友
时间:2023-09-24 08:17
为零。。。。。。
热心网友
时间:2023-09-24 08:18
不知道,真的不知道
级数收敛的必要条件
级数收敛的必要条件是通项趋于0。一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这dao条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法(和一个知道的收敛级数比较)。例如an=1/n,通项趋于0,但是发散。
级数收敛的必要条件
级数收敛的必要条件:通项an趋于0。一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与...
收敛的必要条件
收敛的必要条件是通项an趋于0,一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法。收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变,两个收敛级数逐项...
收敛级数必须要满足什么条件?
级数的部分和数列有界是该级数收敛的必要条件。相关介绍:无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然是有界的,但也是发散的。所以有界不是收敛的充分条件。收敛级数的基本性质主要有:原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收...
级数收敛的必要条件是什么?
那么比A小的数的幂级数一致收敛,这与条件收敛矛盾,所以,只能是在端点。根据阿贝尔级数判别:在收敛域内 不含端点,级数必绝对收敛。在收敛域外不含端点,级数必发散。若级数条件收敛,那他一定不是绝对收敛的,所以不再收敛域内。同时级数又不是发散的,所以在整个实数轴上只剩下端点。
高数无穷级数中,级数收敛的充分条件是什么
这个关系一般是:级数收敛的必要条件是加项极限为0,也可以说成是:数列极限为0的一个充分条件是它组成的级数收敛。级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性。原级数收敛,对此级数的项任意...
级数收敛的条件是什么?怎样绝对收敛?
一、级数收敛的必要条件是数列收敛于0。否则当n→∞时,an→无穷大或非零值,那么a1+a2+...+an+...怎么可能收敛呢?解释如下图(通俗易懂)二、级数的“绝对收敛”,是指Σ(i=1~∞)|an|收敛,即an加了绝对值也是收敛的,那么不加绝对值就更加收敛了!即:加绝对值比不加绝对值更容易发散,...
级数收敛的充要条件是什么?
数项级数收敛的充要条件是:级数的前n项和Sn满足A=lim(n->+∞)。收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。
...收敛,条件收敛,正项级数收敛的充要条件。级数收敛的必要条件...
Σ|an|收敛,则Σan绝对收敛。Σ|an|发散而Σan收敛,则Σan条件收敛。正项级数收敛的充要条件 是级数的部分和数列有界。级数收敛的必要条件是 通项lim an = 0。收敛级数可以看成是有限和的推广,但无限和包含有极限过程。并不是有限和的所有性质都为无限和所保持。大体说来,绝对收敛的级数保持...
级数收敛的判别法则是什么?
(1)必要条件:级数收敛,通项趋于0.(2) 线性运算性质:两级数收敛,则有 (3) 级数的项乘以非零常数敛散性不变.(4) 增加或减少级数中的有限项不改变原级数的敛散性,即级数的敛散性性与前有限项无关,但收敛级数的和会有影响.(5) 级数收敛,则在不改变级数项前后...