发布网友 发布时间:2022-04-23 21:21
共2个回答
热心网友 时间:2023-09-07 22:04
函数ln(x+√(1+x^2))在原点的泰勒展开式:
(ln(x+√(1+x^2)))'=1/(√(1+x^2))=(1+x^2)^(-1/2)
(1+x^2)^(-1/2)=1-(1/2)x^2+(-1/2)(-1/2-1)/2!(x^4)+(-1/2)(-1/2-1)(-1/2-2)/3!(x^6)+...
=1-(1/2)x^2+(-1/2)(-3/2)/2!(x^4)+(-1/2)(-3/2)(-5/2)/3!(x^6)+...
=1-(1/2)x^2+(-1)^2(1*2*3/2)(1/2^2)/2!(x^4)+(-1)^3*(1*2*3*4*5/(2*4))(1/2^3)/3!(x^6)+...
=1+∑(-1)^n*(2n-1)!/(2^(2n-1)(n-1)!n!)x^2n (-1<x<1)
∴ln(x+√(1+x^2))=x+∑(-1)^n*(2n-1)!/(2^(2n-1)(n-1)!n!(2n+1))x^(2n+1) (-1<x<1)
泰勒公式:
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
热心网友 时间:2023-09-07 22:04
f'(x)=-2x/(1-x²)
f''(x)=[-2(1-x²)-(-2x)(-2x)]/(1-x²)²
=-2(1+x²)/(1-x²)²
f(3) (x)
=-2[2x(1-x²)²-2(1-x²)(-2x)(1+x²)]/(1-x²)^4
泰勒公式的余项
泰勒公式的余项有两类:
一类是定性的皮亚诺余项。
另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)。