发布网友 发布时间:2022-04-23 22:02
共2个回答
热心网友 时间:2023-10-11 09:14
用局部连接而不是全连接,同时权值共享。局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。这样一来需要训练的权值数相比全连接而言会大大减少,进而减小对样本空间大小的需求。权值共享的概念就是,某一隐藏层的所有神经元共用一组权值。这两个概念对应卷积层的话,恰好就是某个固定的卷积核。卷积核在图像上滑动时每处在一个位置分别对应一个“局部连接”的神经元,同时因为“权值共享”的缘故,这些神经元的参数一致,正好对应同一个卷积核。顺便补充下,不同卷积核对应不同的特征,比如不同方向的边(edge)就会分别对应不同的卷积核。激活函数f(x)用ReLU的话避免了x过大梯度趋于0(比如用sigmoid)而影响训练的权值的情况(即Gradient Vanishing)。同时结果会更稀疏一些。热心网友 时间:2023-10-11 09:15
你好,我对你的训练失败非常感兴趣,请问是否可以将caffe模型转化为tensorflow模型?这样我好方便进行调试分析