发布网友 发布时间:2022-12-28 21:53
共1个回答
热心网友 时间:2023-10-24 10:16
每组的最高数值与最低数值之间的距离。在分组整理统计量数时,组的大小可因系列内量数的全距及所要划分的组数的不同而有所不同。每一组的最小限度叫做下限,最大限度叫做上限。下限和上限之间的距离,即为组距。(多用于直方图中)
组距分组是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。组距分组是数值型数据分组的基本形式。
在组距分组中,各组之间的取值界限称为组限,一个组的最小值称为下限,最大值称为上限;上限与下限的差值称为组距;上限与下限值的平均数称为组中值,它是一组变量值的代表值。
把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
例如,某生产车间50名工人日加工零件数如下(单位:个)。试对数据进行组距分组。
117,108,110,112,137,122,131,118,134,114,124,125,123,127,120,129,117,126,123,128,139,122,133,119,124 ,107,133,134,113,115 ,117,126,127,120,139, 130,122,123,123,128,122,118,118,127,124,125,108,112,135,121
采用组距分组需要经过以下几个步骤:
第一步
确定组数。一组数据分多少组合适呢?一般与数据本身的特点及数据的多少有关。由于分组的目的之一是为了观察数据分布的特征,因此组数的多少应适中。如组数太少,数据的分布就会过于集中,组数太多,数据的分布就会过于分散,这都不便于观察数据分布的特征和规律。组数的确定应以能够显示数据的分布特征和规律为目的。在实际分组时,可以按Sturges提出的经验公式来确定组数K:K=1+lgn/lg2
其中n为数据的个数,对结果用四舍五入的办法取整数即为组数。例如,对前例的数据有:K=1+lg50/lg2≈7,即应分为7组。当然,这只是一个经验公式,实际应用时,可根据数据的多少和特点及分析的要求,参考这一标准灵活确定组数。
第二步
确定各组的组距。组距是一个组的上限与下限的差,可根据全部数据的最大值和最小值(即极差)及所分的组数来确定,即组距=(最大值-最小值)÷组数。例如,对于前例的数据,最大值为139,最小值为107,则组距=(139-107)÷7=4.6。为便于计算,组距宜取5或10的倍数,而且第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,因此组距可取5。
第三步
根据分组整理成频数分布表。比如对上面的数据进行分组,可得到下面的频数分布表,见表:
某车间50名工作日加工零件数分组表