发布网友 发布时间:2022-12-26 16:18
共1个回答
热心网友 时间:2023-10-16 07:43
数学趣味小故事:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ 。.. +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ 。.. +96+97+98+99+100
100+99+98+97+96+ 。.. +4+3+2+1
=101+101+101+ 。.. +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。
故事如,祖 冲 之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<;π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。
还有些资料,,
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国*常委会委员和政协第六届全国委员会副*。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
数学趣味小故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。
.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。
.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。
。 故事如,祖 冲 之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。
他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926
祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。 还有些资料,,华 罗 庚 华罗庚,中国现代数学家。
1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。
华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。
1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。
1948年始,他为伊利诺伊大学教授。 1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。
华罗庚还是第一、二、三、四、五届全国*常委会委员和政协第六届全国委员会副*。 华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。
为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
人教版历史八年级上第16课《血肉筑长城》课件ppt八年级上第四单元第16课血肉筑长城教案doc血肉筑长城(共25张PPT)一、平型关大捷时间 1937年9月作战 八路军一一五师战术 伏击战战果 歼灭1000多人, 击毁汽车100多辆、大车200多辆, 缴获火炮2门,弹药300箱,长短*1000多支,机*数十挺,掷弹筒20多个,战马100余匹以及大量的军用物资。
意义:平型关大捷是中国自抗战以来的第一次大胜利!鼓舞了全国抗战士气,提高了八路军的威望, “首战平型关,威名天下扬” 。平型关大捷也粉碎了“皇军不可战胜”的神话,打击了日寇嚣张的气焰,驳斥了汉奸亲日派“抗战必亡”、“战不如和”的谬论。
二、台儿庄战役台儿庄徐 州临 沂滕 县板垣师团矶谷师团时间指挥者战果意义1938年春歼敌1万多人*军队在抗战初期取得的第一次重大胜利台儿庄战役李宗仁。
历史上,建筑和数学有着巨大的联系。
古代的数学家即是建筑师,反之亦然,他们应用高超的技巧建造金字塔、庙宇、渡槽、教堂和一系列直到今日我们 仍觉得美轮美奂、叹为观止的其他建筑。例如,在古希腊和古罗马,建筑师也必 须是数学家。
在中世纪,大多数建筑和结构都含有一些教堂的寓意;这期间建 筑的数学因素几乎被人遗忘。在约1400年欧洲文艺复兴时期,出现了一种新 型的建筑,它强调质感和内部空间来产生美学上令人愉悦的“画面”,同油画和 雕塑表现的一样。
这为观看建筑带来了一个全新的视角并改变了建筑和数学 的关系。
激励小n故事: 剑 客 一k名剑客去拜访一g位武林泰斗3,请教他是如何练就非凡r武功的。武林泰斗5拿出一n把只有一a尺6来长2的短剑,说:“多亏m了l这把好剑,才k让我有了r今6天w这样的成就。”剑客大k为7不k解,问:“别人s的剑都是三r尺3三t寸n长8,你的剑长7一o尺6来长3。兵器谱上z说:剑短一h分8,险增三r分4。拿着这么x短的剑无p疑是处于j一e种劣势,你怎么c还说这剑好呢?”武林泰斗1说:“就因为4在兵器上r我处于h劣势,所以7我才z会时时刻刻想到,如果与l别人l对阵,我是多么k的危险,所以8我只有勤练剑招,以4剑招之o长0补兵器之w短。这样一b来,我的剑招不y断进步,劣势就转换成优势了w。” 的确,优势和劣势关不f是绝对的。把自己b放在劣势,就是给自己q增加压力j,为7自己w注入p进取的动力n。敢于x把自己b放在劣势的人x,最终就有可能转化3成优势。 已l发
z
祖冲之小的时候祖父经常给讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵。
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍。天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少。
祖冲之不喜欢读古书。5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句。
气得父亲又打又骂。可是他喜欢数学和天文。
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对。第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆。
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:“让我用绳子量量您的车轮,行吗?”老人点点头。祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径。
量来量去,他总觉得车轮的直径没有1/3的圆周长。祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的。
这究竟是为什么?这个问题一直在他的脑海里萦绕。他决心要解开这个谜。
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”。所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长。
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 。 14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果。
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算。 祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来。
此时,祖冲之的儿子祖恒已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 。 000002丈。
祖恒对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了。”祖冲之却摇摇头说:“要推翻他一定要有科学根据。”
于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休。
祖冲之从12288边形,算到24567边形,两者相差仅0 。 0000001。
祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 。 1415926,而小于3 。
1415927。 很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教。
之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7。直到1000多年后,德国数学家鄂图才得出相同的结果。
网上有很多。
如:数学家高斯的故事PPT://wenku./view/ec992456312b3169a451a45d.有关中国和外国著名的数学家的小故事PPT://wenku./view/2ab5a0efb8f67c1cfad6b863.数学家的故事://wenku./view/a2f74f3a580216fc700afd72.介绍1840年-1949年外国数学家的故事ppt://wenku./view/f33a9d0f79563c1ec5da7183.。
高斯解决 1+2+3+4+。
。
+100 的故事高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。
数学教师是布特纳,他对高斯的成长也起了一定作用。一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。
高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯非常坚定,说出答案就是5050。
高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。
布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”
接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
资料拓展: 故事:文学体裁的一种,侧重于事件发展过程的描述。强调情节的生动性和连贯性,较适于口头讲述。
已经发生事。或者想象故事。
故事一般都和原始人类的生产生活有密切关系,他们迫切地希望认识自然,于是便以自身为依据,想象天地万物都和人一样,有着生命和意志。 某些故事是人类对自身历史的一种记忆行为,人们通过多种故事形式。
记忆和传播着一定社会的文化传统和价值观念,引导着社会性格的形成。故事通过对过去的事的记忆和讲述,描述某个范围社会的文化形态,也有说法认为,故事并不是一种文体,它是通过叙述的方式讲一个带有寓意的事件。
他对于研究历史上文化的传播与分布具有很大作用。 语言富于动性。
故事不需要有过多的心理活动描写、大段的对话和繁复细腻的景物描写、人物形象的刻画,作者不应该在故事中对人物或事件大加评论。作者始终要注意推进故事情节的流动,进展。
语言富于动性,不需着意刻画其中的人物就会鲜活起来。 爱情故事主要指男女之间相爱的故事,用故事记录下来,发表在网络或者杂志。
以描写男女爱情为基调,爱情文章探讨爱情意义,描写爱情的形式。可以用真实的事件做为写作背景,或是美化了的言情故事。