请问有没有椭圆形的计算方法?
发布网友
发布时间:2022-12-26 20:50
我来回答
共1个回答
热心网友
时间:2023-10-17 03:06
(a)椭圆形的周界 椭圆形的周界是4aE(e),其中a是长轴的长度,e是离心率e = √(1 – b²/a²), 函数E(k)是第二类完全椭圆积分函数。 E(k)的运算定义如下: E(k) = E(π/2
k) = ∫(0 to π/2) √(1 – k² sin² θ) dθ mathworld.wolfram/EllipticIntegraloftheSecondKind 证明: 首先把椭圆形放在平面直角坐标上,其实放在任何位置都可以,但为了方便计算,就把椭圆形的圆心对准在平面直角坐标的原点上,最长的半径a对准在x轴,最短的半径b对准在y轴。 此时,椭圆形的方程是x²/a² + y²/b² = 1,其中a是最长的半径,b是最短的半径。 此外,椭圆形的参数方程是x = a sin θ
y = b cos θ。 ∵该椭圆形与x轴和y轴对称 ∴椭圆形的周界 = 4 ∫(0 to π/2) √[(dx/dθ)² + (dy/dθ)²] dθ = 4 ∫(0 to π/2) √[(a cos θ)² + (– b sin θ)²] dθ = 4 ∫(0 to π/2) √(a² cos² θ + b² sin² θ) dθ = 4 ∫(0 to π/2) √(a² cos² θ + a² sin² θ – a² sin² θ + b² sin² θ) dθ = 4 ∫(0 to π/2) √[a² – (a² – b²) sin² θ] dθ = 4a ∫(0 to π/2) √[1 – (1 – b²/a²) sin² θ] dθ = 4a ∫(0 to π/2) √[1 – (√(1 – b²/a²))² sin² θ] dθ = 4a ∫(0 to π/2) √[1 – e² sin² θ] dθ = 4aE(e) 椭圆形的周界还可以以无穷级数表示: 椭圆形的周界 = 2πa[1 – (1/2)²e² – ((1 × 3)/(2 × 4))²((e^4)/3) – ((1 × 3 × 5)/(2 × 4 × 6)²((e^6)/5) – …] 或 椭圆形的周界 = 2πaΣ(n = 0 to ∞)[– [Π(m = 1 to n)[(2m – 1)/(2m)]]²(e²ⁿ/(2n – 1))] E(k)这个积分不能用平常的方法求得,因为√(1 – k² sin² θ)的原函数(primitive function)是不能以基础函数(elementary function)表示。 一般来说,E(k)的计算要用到进阶的数学软件,如Mathematica的built-in function: E(k) : = EllipticE[√k] 由于不能得到准确的数值,所以有估算公式,例如: 椭圆形的周界 ≈ π[3(a + b) – √((3a + b)(a + 3b))] 它还可以写为: 椭圆形的周界 ≈ πa[3(1 + √(1 – e²)) – √((3 + √(1 – e²))(1 + 3√(1 – e²)))] zh. *** /wiki/%E6%A4%AD%E5%9C%86 还有其他估算公式,例如: 椭圆形的周界 ≈ π√(2a² + 2b²) 或 椭圆形的周界 ≈ π(a + b)[1 + 3h/(10 + √(4 – 3h))] where h = ((a – b)/(a + b))² mathworld.wolfram/Ellipse (b)椭圆形的面积 椭圆形的面积是πab,其中a是最长的半径,b是最短的半径。 证明: 首先把椭圆形放在平面直角坐标上,其实放在任何位置都可以,但为了方便计算,就把椭圆形的圆心对准在平面直角坐标的原点上,最长的半径a对准在x轴,最短的半径b对准在y轴。 此时,椭圆形的方程是x²/a² + y²/b² = 1,其中a是最长的半径,b是最短的半径。 ∵该椭圆形与x轴和y轴对称 ∴椭圆形的面积 = 4 ∫(0 to a)│y│dx = 4 ∫(0 to a) b√(1 – x²/a²) dx = 4b/a ∫(0 to a) √(a² – x²) dx 设x = a sin θ,其中 – π/2 ≦ θ ≦ π/2 dx = a cos θ dθ 当x = 0,θ = 0 当x = a,θ = π/2 因此4b/a ∫(0 to a) √(a² – x²) dx = 4b/a ∫(0 to π/2) √(a² – a² sin² θ) (a cos θ) dθ = 4ab ∫(0 to π/2) cos² θ dθ = 2ab ∫(0 to π/2) (1 + cos 2θ) dθ = 2ab [θ + (sin 2θ)/2] (0 to π/2) = πab 2007-07-20 23:27:41 补充: 楼上再楼上果位ⓡⓤⓑⓨ ,你只copycat,你竟然照抄我在这题.knowledge.yahoo/question/?qid=7007042904211的回答却唔落出处,抄袭我嘅回答已经好唔应该啦,仲抄错嘢,搞到答非所问添!如果你果篇嘢做到「最佳解答」嘅话我实唔会放过你!!!by doraemonpaul
参考: Partly from my previous wer .knowledge.yahoo/question/?qid=7007051003438(经本人重新整理)+ 其他资料
虽然条公式系长左d,不过其实呢个已经系最简单既表达方式, 反正难既地方唔系o系条式度,而系o系个证明度, 睇你应该系P.5-F.2 个证明系你F.5学左微积分之后就会明。 如果你真系觉得条式太长既话,咁都冇办法,睇你可以唔可以发明个数学方法等条式冇咁长罗!
椭圆形的周界并没有准确的公式去计算,但有一些式子可以找到其近似值。 例: P = p sqrt[ 2(a2+b2) - (a-b)2/2 ] 其中 a 是"" (唔知中文系咩) semi-major axis ,b 是 semi-minor axis 详细请阅以下网页(英文,劲难): home.att/~numericana/wer/ellipse ############################################### 面积: 有一个网可以帮你计: csgneork/areaellipse 公式: Area = Pi * A * B A
B 等于上一part 的a
b. 椭圆圆体积 = (4/3)*Pi*A*B*C (A
B
C are semi-axes) ############################################### ##括着的来自以下网页: math.hmc.e/funfacts/ffiles/10006.3.s
An ellipsoid(椭圆体) is a type of quadric surface that is a higher dimensional *** ogue of an ellipse(椭圆形). The equation of a standard ellipsoid body in an x-y-z Cartesian coordinate system is x²/a² + y²/b² + z²/c² = 1 where a and b are the equatorial radii (along the x and y axes) and c is the polar radius (along the z-axis)
all of which are fixed positive real numbers determining the shape of the ellipsoid. en. *** /wiki/Ellipsoid (a)椭圆体的体积 要计算椭圆体的体积,必须先要计算椭圆形的面积。 en. *** /wiki/Ellipse and mathworld.wolfram/Ellipse have been introced about ellipse in detail. By now I only want to tell you about some important properties about the ellipse in an x-y Cartesian coordinate system. The equation of an ellipse in standard position in an x-y Cartesian coordinate system is x²/a² + y²/b² = 1 where a and b represent the semimajor axis (or semiminor axis) and the semiminor axis (or semimajor axis) respectively
all of which are fixed positive real numbers determining the shape of the ellipsoid. ∵The ellipse is symmetric abount the x and y coordinate axes. ∴The area of ellipse is 4 ∫(0 to a)│y│dx = 4 ∫(0 to a) b√(1 – x²/a²) dx = 4b/a ∫(0 to a) √(a² – x²) dx Let x = a sin θ
where – π/2 ≦ θ ≦ π/2 We have dx = a cos θ dθ and hence 4b/a ∫(0 to a) √(a² – x²) dx = 4b/a ∫(0 to π/2) √(a² – a² sin² θ) (a cos θ) dθ = 4ab ∫(0 to π/2) cos² θ dθ = 2ab ∫(0 to π/2) (1 + cos 2θ) dθ = 2ab [θ + (sin 2θ)/2] (0 to π/2) = πab 现在回到正题,开始计算椭圆体的体积。 椭圆体体积的求法可将椭圆体沿z轴方向分成无数片椭圆形薄片,每片均垂直于z轴。 由于每片椭圆形薄片x轴方向的半径都是位于椭圆形 x²/a² + z²/c² = 1之内 => x = a√(1 – z²/c²) => x(z) = a√(1 – z²/c²) 由于每片椭圆形薄片y轴方向的半径都是位于椭圆形 y²/b² + z²/c² = 1之内 => y = b√(1 – z²/c²) => y(z) = b√(1 – z²/c²) 且椭圆 *** 于z轴方向的位置是由 – c去到c ∴椭圆体的体积 = ∫(– c to c) A(z) dz = ∫(– c to c) πx(z)y(z) dz = ∫(– c to c) πa√(1 – z²/c²) × b√(1 – z²/c²) dz = πab ∫(– c to c) (1 – z²/c²) dz = πab [z – z³/(3c²)] (– c to c) = (4/3)πabc (b)椭圆体的表面面积 这就非常复杂了! 椭圆体表面面积的公式,绝不像球体(equatorial radii a and b(along the x and y axes)= polar radius c(along the z-axis)的椭圆体)表面面积的公式S = 4πr²般简单,是要用到去到大学先至教的微分几何。 (本人懂得回答以下部分,并不代表本人懂得微分几何,本人只是懂得抄而矣。) The parametric equations of an ellipsoid can be written as x = a cos θ sin φ y = b sin θ sin φ z = c cos φ for azimuthal angle θ which belongs to [0
2π) and polar angle φ which belongs to [0
π]. In this parametrization
the coefficients of the first fundamental form are E = (b² cos² θ + a² sin² θ) sin² φ F = (b² – a²) cos θ sin θ cos φ sin φ G = (a² cos² θ + b² sin² θ) cos² φ + c² sin² φ The surface area of an ellipsoid is given by S = ∫(0 to π) ∫(0 to 2π) √(EG – F²) dθ dφ = ∫(0 to π) sin φ ∫(0 to 2π) √(a² b² cos² φ + c²(b² cos² θ + a² sin² θ) sin² φ) dθ dφ = 2√2 b ∫(0 to π) (√(a² + c² + (a² – c²) cos 2φ)) sin φ E{(c/b)[√[(2(b² – a²))/(a² + c² + (a² – c²) cos 2φ)]] sin φ} Where E(k) = E(π/2
k) = ∫(0 to π/2) √(1 – k² sin² θ) dθ mathworld.wolfram/EllipticIntegraloftheSecondKind mathworld.wolfram/Ellipsoid