如何正确建立大数据结构
发布网友
发布时间:2022-04-23 10:27
我来回答
共1个回答
热心网友
时间:2022-04-13 14:41
如何正确建立大数据结构
大数据各行各业的企业都提供了潜力。正确使用这些大数据信息可能将增加商业价值,帮助您的企业从市场竞争中脱颖而出。如下是几个企业成功应用大数据的案例:
大数据的例子
汽车制造商已经开始使用大数据来了解汽车何时需要返回到车库进行维修。使用汽车发动机的数百个传感器,可以为汽车制造商发送实时的数据信息,这使得制造商甚至比驾驶汽车的司机还要提前知道汽车何时会出现故障。卡车制造商开始使用大数据,基于实时交通条件和客户的需求来改进他们的路由,从而节约燃料和时间。
零售业也开始越来越多的使用大数据,鉴于越来越多的产品均有一个RFID标签能帮助零售商跟踪产品,知道很少某种产品库存缺货,并及时向供货商订购新产品。沃尔玛便是这正确利用大数据这方面的一个很好的例子。当零售商开始识别他们的客户时,就能够更好地建立商店,更好的满足客户的需求。
当然,上述这些只是几个浅显的例子,大数据的可能性几乎是无止境的。不久的将来,我们将讨论在大数据平台上的最佳实践。知道大数据能够提供商业价值是一回事;而企业要知道如何创建正确的架构则又是另一回事了。
大数据结构
大数据有三个特征,使得大数据不同于现有的数据仓库和商业智能。大数据的这三大特点是:
数据量庞大:大数据的数据量相当庞大,更多的时候大数据的数据量可以达到比数TB到PB级字节。
高速度传递:所有这些TB和PB字节的数据能够实时交付,数据仓库每天都需要应付如此高速的数据流。
种类繁杂:大数据比使用现有的商业智能中正常数据的种类更繁杂。大数据还包括非结构化社交数据,如Twitter或*网的社会信息、日志文件、电子邮件等。
根据这些特性,建立您企业的体系结构是非常重要的。一个很好的出发点是以企业现有的数据仓库为基础。高密度数据的数据仓库,其中包含用于当前商业智能的仪表板。重要的是,该企业是为了之后再移动到大数据。把大数据转移到您的企业有如下四个步骤:
1)进一步分析当前的数据:从仪表板和ad-hoc查询,到诸如空间分析和图形分析或更高级先进的分析。您可以专注于客户忠诚度、客户流失率、分析本地情况(如何接近您的客户),并开始建立社交网络(与您的客户建立社交联系)。这些分析将为您的企业带来更多的商业价值。
2)建立正确的架构,用于存储数据的种类和数量:这一切大数据是如何存储在您的企业的。把这些原始数据直接转化到数据仓库中,每兆字节以低成本优化存储大量低密度数据是十分重要的。这便是Hadoop本身已被证明是非常有效的。Hadoop是开源的,与现有的数据库兼容。它集合了所有可用的数据,您可以用它来寻找新的关系和新的潜在的商业价值。
3)为数据传输速度建立体系结构:一旦您有合适的设备来存储大量的不同的数据,您就可以开始实时处理数据。例如如果您有数据流从传感器传输而来,存储在Hadoop,您想看看正在发生的事件,并需要确定是否需要采取行动。您可以使用一切历史数据,以确定在实时条件下进行预期(预测分析),您可以创建模型反应发生模式。如果您已经建立了一个智能的基础设施,您将能够实时响应事件,并进行实时的决策。
4)开始探索新的模式:利用所有可用的数据,您可以在您的数据中发现新的模式。从Hadoop与其他可用的数据汇总数据相匹配。有不同的大数据初创公司开发的工具,在这个平台上分析,可以帮助您可视化,寻求新的关系。我们的目标是找到您要解决的下一个问题,最大限度地帮助您从数据中获取商业价值。
正确发展大数据结构可谓是一个挑战,同时可能成本是相当昂贵的。然而,结果必将物超所值的让您成功收回投资。
如何设计一个方便高效查询的大容量的数据库结构
1、把你表中经常查询的和不常用的分开几个表,也就是横向切分 2、把不同类型的分成几个表,纵向切分 3、常用联接的建索引 4、服务器放几个硬盘,把数据、日志、索引分盘存放,这样可以提高IO吞吐率 5、用优化器,优化你的查询 6、考虑冗余,这样可以减少连接 7、可以考虑建立统计表,就是实时生成...
如何架构大数据系统 hadoop
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapReduce强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不...
全面教你如何建立数据分析的思维框架
三、建立正确的指标结构既然指标太多太复杂不好,那么应该如何正确的选择指标呢?和分析思维的金字塔结构一样,指标也有固有结构,呈现树状。指标结构的构建核心是以业务流程为思路,以结构为导向。假设你是内容运营,需要对现有的业务做一个分析,提高内容相关数据,你会怎么做呢?我们把金字塔思维转换一下,就成了数据分析方法...
(二)企业构架四大支柱之“数据架构”
深入探讨《数据架构的本质》,我们揭示其核心要素:TOGAF原则引导下的9大关键制品,包括数据目录、实体-业务和应用-数据矩阵,以及九类揭示数据奥秘的数据图。这些制品如同一座桥梁,连结业务、数据、应用和技术架构的脉络,让复杂的数据结构、管理和治理变得清晰可见。TOGAF在C阶段精心设计的9个交付物,如数...
高并发下,数据库成最大问题怎么办
索引,一个没有簇索引的表是按堆结构存储数据,所有的数据均添加在表的尾部,而建立了簇索引的表,其数据在物理上会按照簇索引键的顺序存储,一个表只允许有一个簇索引,因此,根据B树结构,可以理解添加任何一种索引均能提高按索引列查询的速度,但会降低插入、更新、删除操作的性能,尤其是当填充因子(FillFactor)较大时...
教你设计大型Oracle数据库
一般的超大型系统采用双机或多机集群系统 下面以数据库采用Oracle 并行服务器为例来谈谈超大型数据库设计方法 确定系统的ORACLE并行服务器应用划分策略 数据库物理结构的设计 系统硬盘的划分及分配 备份及恢复策略的考虑 二 Oracle并行服务器应用划分策略 Oracle并行服务器允许不同节点上的多个INSTANCE实例同时...
如何构建一个完善的数据库,如何来处理表与表关系.
建立数据表,注意以下几点:表建立的时候要有主键和索引,表与表之间要能使用主键相联系,举例说在A表里我做完一次记录要生成一个单号,B表里面是依据单号来做下一个流程,而不是依据记录的每一条数据 取名尽量使用英文+下划线,SQL Server里对汉字需要转码,影响工作效率,按照他的默认编码方式操作有...
大数据究竟多大才算是,该如何学习大数据?
在理解大数据概念的时候,通常都有几个较为明显的误区,其一是只有足够大的数据才能算是大数据范畴;其二是大数据和互联网是隔离的;其三是大数据就是统计学;其四是大数据会“杀熟”,应该尽量远离大数据等等。 在大数据时代,任何体量的数据都可以采用大数据技术进行处理,传统的结构化数据处理方式也已经并入到了大数据的技术体...
数据结构的学习: 1、感觉数据结构学的就是一个思想。具体实现在实际编程...
大三分流,大致有软件开发、网络工程、电子商务几个方向(根据学校自身安排)。 我们学校的课程就是这样的,也许别的学校跟这个有出入,但大致都是类似的,而且我觉得我们学校的这种安排还是比较合理的。 根据这个课程安排,你可以看到数据结构、离散数学都是大二才学的,属于比较有难度的,而且要求一定...
五种大数据处理架构
五种大数据处理架构大数据是收集、整理、处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称。虽然处理数据所需的计算能力或存... 五种大数据处理架构大数据是收集、整理、处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称。虽然处理数据所需的计算能力或存 展开 ...