关于最小作用量原理
发布网友
发布时间:2023-05-26 22:57
我来回答
共1个回答
热心网友
时间:2023-05-27 19:56
作为研究光线的反射和折射的结果,费尔马曾得出这样的结论:“自然界总是通过最短的途径发生作用的。”此后,莫培督在其1744年的一片著名论文中宣布了一个原理,他称之为“最小作用量原理。”他用这样几句话说明了这个原理:“自然界总是通过最简单的方法产生起作用的。如果一个物体必须没有任何阻碍地从这一点到另一点——自然界就利用最短的途径和最快的速度来引导它。”(原先也一直不能并存的自然界各种规律现在就一致起来了。《科学院的报告》,1744年4月15日,第421页)简单地说这意味着任何不受影响的动力学系统在发生变化时,其变化方式总是使有关的作用量为最小。在对物理实在(现象)的观察中,科学家们相信,对于不同的观察者物理实在可以不同,但其物理实在的结构(规律)必定是相同的。物理学中描述物理实在结构的方法之一就是作用量方法。这种方法从功能角度去考察和比较客体一切可能的运动(经历),认为客体的实际运动(经历)可以由作用量求极值得出,是其中作用量最小的那个。这个原理称为最小作用量原理。
相对论运用时空事件的四维世界把最小作用量原理解释为能够从可能的世界线中挑选出实际的世界线的原理。在这种情况下相对论并没有给最小作用原理添加进新的物理内容。这种物理内容可以为量子物理所引入。只有作出某种把相对论和微观世界联系在一起的解释的情况下,根据更为一般的设想,相对论或许有“推出”最小作用原理的可能。在建立广义相对论时爱因斯坦用过最小作用原理。此时作用量的概念得到某些新的解释。如所周知,在决定空间和时间的曲率时借助于四个恒等式,并且力求排除表征空间时间特性但不表征曲率的多余的参量。这些恒等式按其物理意义而言表示不同坐标系中空间和时间曲率的同一性,曲率张量取决于能量冲量张量。在研究此问题时,爱因斯坦指出,上述四个恒等式有物理意义,也就是具有守恒定律的意义,并且表示了空间时间的特性。然而,现在当我们谈能量冲量张量时,空间的首要特性,即其均匀性对应于冲量分量守恒;而时间的均匀性对应于能量守恒。这样,守恒定律就对应于曲率张量之间恒等的数量关系,作为与这种或那种坐标表示无关的物理特性的曲率对应于作用量。爱丁顿提出在广义相对论中对作用量这一概念意义的极为精细、深刻的说法。他指出:对时空连续统而言,作用量扮演着类似于能量在空间关系上所扮演的角色。在四维世界里,作用量是曲率的量度,即决定质点运动的四维连续统的基本特性的量度。我们顺便指出:在叙述魏尔的统一场论时爱丁顿曾顺带提到对作用量的一种很有益的解释。爱丁顿说,可能作用量就是概率的函数,然而当把一些概率连乘,则作用量就相加,从而作用量可以认为是概率的对数。由于概率的对数是负数,所以作用量就要看成是概率的对数再加上负号,此时最小作用原理则表示实际实现的运动的最大概率。
在现代量子力学中最小作用量原理起着重要作用。不但如此,对于作用量概念的思考也激起对现存理论进行总结的尝试。表征微观世界之基本量,即作用量子和引入到宏观力学的基本数量关系中的量,即由能量按时间积分,这两个量的量纲一致,促使近代理论家在一系列设想上尽管没有引出什么具体的物理理论,但是却引出一些看来是很有前途的物理理论。