圆柱的表面积计算公式字母?
发布网友
发布时间:2022-04-24 01:56
我来回答
共3个回答
热心网友
时间:2023-10-20 07:32
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
详解:
圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
扩展资料:
圆柱相关数学概念:圆锥组成
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
参考资料来源:百度百科-圆锥
参考资料来源:百度百科-圆柱体
热心网友
时间:2023-10-20 07:32
4739S表=2πr²+2πrh有关圆柱的公式圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。圆柱体积圆柱所占空间的大小,叫做这个圆柱体的体积。求圆柱的体积跟求长方体、正方体一样,都是底面积×高。设一个圆柱底面半径为r,高为h,则圆柱的体积为:V=πr²h;S为底面积,高为h,体积为V,三者关系为:V=Sh;其中,S=πr²。圆柱性质(1)圆柱的底面都是圆,并且大小一样。(2)圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
(3)两个底面的对应点之间的距离叫做高,且高有无数条。补充圆柱体在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。圆柱的侧面积公式如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以要求圆柱侧面积就是用底面周长*高了圆柱表面积计算公式圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2单位:平方厘米、平方米、平方分米。圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
热心网友
时间:2023-10-20 07:33
01
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
02
算术方面
01、加法交换律:两数相加交换加数的位置,和不变。
02、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
03、乘法交换律:两数相乘,交换因数的位置,积不变。
04、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
05、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
06、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
07、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
08、什么叫方程式?答:含有未知数的等式叫方程式。
09、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
03
数量关系计算公式方面
01、单价×数量=总价
02、单产量×数量=总产量
03、速度×时间=路程
04、工效×时间=工作总量
05、加数+加数=和 一个加数=和-另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
06、1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
07、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
08、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
09、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
16、互质数:公约数只有1的两个数,叫做互质数。
17、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
18、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
19、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
20、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
21、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
22、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
23、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
24、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
25、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
26、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
27、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
28、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
29、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
30、什么叫代数?代数就是用字母代替数。
31、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
- End -
热心网友
时间:2023-10-20 07:32
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
详解:
圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
扩展资料:
圆柱相关数学概念:圆锥组成
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
参考资料来源:百度百科-圆锥
参考资料来源:百度百科-圆柱体
热心网友
时间:2023-10-20 07:32
4739S表=2πr²+2πrh有关圆柱的公式圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。圆柱体积圆柱所占空间的大小,叫做这个圆柱体的体积。求圆柱的体积跟求长方体、正方体一样,都是底面积×高。设一个圆柱底面半径为r,高为h,则圆柱的体积为:V=πr²h;S为底面积,高为h,体积为V,三者关系为:V=Sh;其中,S=πr²。圆柱性质(1)圆柱的底面都是圆,并且大小一样。(2)圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
(3)两个底面的对应点之间的距离叫做高,且高有无数条。补充圆柱体在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。圆柱的侧面积公式如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以要求圆柱侧面积就是用底面周长*高了圆柱表面积计算公式圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2单位:平方厘米、平方米、平方分米。圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
热心网友
时间:2023-10-20 07:33
01
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
02
算术方面
01、加法交换律:两数相加交换加数的位置,和不变。
02、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
03、乘法交换律:两数相乘,交换因数的位置,积不变。
04、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
05、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
06、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
07、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
08、什么叫方程式?答:含有未知数的等式叫方程式。
09、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
03
数量关系计算公式方面
01、单价×数量=总价
02、单产量×数量=总产量
03、速度×时间=路程
04、工效×时间=工作总量
05、加数+加数=和 一个加数=和-另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
06、1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
07、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
08、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
09、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
16、互质数:公约数只有1的两个数,叫做互质数。
17、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
18、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
19、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
20、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
21、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
22、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
23、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
24、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
25、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
26、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
27、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
28、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
29、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
30、什么叫代数?代数就是用字母代替数。
31、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
- End -
热心网友
时间:2023-10-20 07:32
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
详解:
圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
扩展资料:
圆柱相关数学概念:圆锥组成
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
参考资料来源:百度百科-圆锥
参考资料来源:百度百科-圆柱体
热心网友
时间:2023-10-20 07:32
4739S表=2πr²+2πrh有关圆柱的公式圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。圆柱体积圆柱所占空间的大小,叫做这个圆柱体的体积。求圆柱的体积跟求长方体、正方体一样,都是底面积×高。设一个圆柱底面半径为r,高为h,则圆柱的体积为:V=πr²h;S为底面积,高为h,体积为V,三者关系为:V=Sh;其中,S=πr²。圆柱性质(1)圆柱的底面都是圆,并且大小一样。(2)圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
(3)两个底面的对应点之间的距离叫做高,且高有无数条。补充圆柱体在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。圆柱的侧面积公式如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以要求圆柱侧面积就是用底面周长*高了圆柱表面积计算公式圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2单位:平方厘米、平方米、平方分米。圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
热心网友
时间:2023-10-20 07:33
01
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
02
算术方面
01、加法交换律:两数相加交换加数的位置,和不变。
02、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
03、乘法交换律:两数相乘,交换因数的位置,积不变。
04、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
05、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
06、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
07、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
08、什么叫方程式?答:含有未知数的等式叫方程式。
09、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
03
数量关系计算公式方面
01、单价×数量=总价
02、单产量×数量=总产量
03、速度×时间=路程
04、工效×时间=工作总量
05、加数+加数=和 一个加数=和-另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
06、1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
07、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
08、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
09、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
16、互质数:公约数只有1的两个数,叫做互质数。
17、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
18、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
19、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
20、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
21、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
22、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
23、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
24、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
25、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
26、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
27、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
28、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
29、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
30、什么叫代数?代数就是用字母代替数。
31、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
- End -
热心网友
时间:2023-10-20 07:32
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
详解:
圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
扩展资料:
圆柱相关数学概念:圆锥组成
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
参考资料来源:百度百科-圆锥
参考资料来源:百度百科-圆柱体
热心网友
时间:2023-10-20 07:32
4739S表=2πr²+2πrh有关圆柱的公式圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。圆柱体积圆柱所占空间的大小,叫做这个圆柱体的体积。求圆柱的体积跟求长方体、正方体一样,都是底面积×高。设一个圆柱底面半径为r,高为h,则圆柱的体积为:V=πr²h;S为底面积,高为h,体积为V,三者关系为:V=Sh;其中,S=πr²。圆柱性质(1)圆柱的底面都是圆,并且大小一样。(2)圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
(3)两个底面的对应点之间的距离叫做高,且高有无数条。补充圆柱体在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。圆柱的侧面积公式如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以要求圆柱侧面积就是用底面周长*高了圆柱表面积计算公式圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2单位:平方厘米、平方米、平方分米。圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
热心网友
时间:2023-10-20 07:33
01
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长公式 S= a×a
长方形的面积=长×宽公式 S= a×b
平行四边形的面积=底×高公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
02
算术方面
01、加法交换律:两数相加交换加数的位置,和不变。
02、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
03、乘法交换律:两数相乘,交换因数的位置,积不变。
04、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
05、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
06、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
07、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
08、什么叫方程式?答:含有未知数的等式叫方程式。
09、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
03
数量关系计算公式方面
01、单价×数量=总价
02、单产量×数量=总产量
03、速度×时间=路程
04、工效×时间=工作总量
05、加数+加数=和 一个加数=和-另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
06、1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
07、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
08、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
09、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
16、互质数:公约数只有1的两个数,叫做互质数。
17、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
18、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
19、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
20、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
21、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
22、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
23、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
24、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
25、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
26、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
27、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
28、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
29、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
30、什么叫代数?代数就是用字母代替数。
31、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
- End -
圆柱的表面积公式
综述:圆柱表面积公式:圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底)。圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh。圆柱的底面积=圆的面积,也就是S底=πr²。圆柱(cylinder)是由两个大小相等、相互平行的圆形(底面)以及连...
圆柱表面积公式字母表示是什么?
圆柱表面积公式字母表示是:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底)。圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh。圆柱的底面积=圆的面积,也就是S底=πr²。计算圆柱体的表面积:圆柱体的表面积公式是:2πr2+2πrh。r表示底面圆半径,...
圆柱的侧面积和表面积计算公式是什么?
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)S侧面积=Ch=2πrh,底面周长C=2πr=πd。(其中r为半径,h为高,d为直径).其他公式:体积:圆柱所占空间的大小,叫做这个圆柱体的体积.求圆柱的体积跟求长方体、正方体一样,都是底面积×高。设一个圆柱底面半径为r,高为h,...
圆柱体的表面积公式字母
圆柱体的表面积 = 2πr(r + h)
圆柱体表面积怎么算(公式)?
圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。
圆柱的表面积怎么计算
圆柱的表面积公式:S表=2πr²+2πrh。圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;圆柱的底面积=圆的面积,也就是S底=πr²。圆柱(cylinder)是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面...
圆柱的表面积公式用字母怎么表示
圆柱的表面积公式S=Ch+2πr^2=2πr(r+h)圆柱体是由两个底面和一个侧面组成的,所以表面积等于两个底面的面积加上侧面的面积。1、圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。2、圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱...
圆柱,圆锥的表面积,体积公式,加上字母公式。
S圆柱体的表面积=S圆柱体侧面+2*πr²S圆柱体侧面=2πr*h 【上或下底的周长(2πr)* 圆柱体的高(h) 】上底和下底的面积 (πr²×2)圆锥体:S圆锥体表面积=S扇形+S下底面圆面积(扇形是圆锥侧面,圆锥高为圆锥尖端到下底面圆中心)体积 圆柱:V圆柱体=底面积×高 圆锥:V...
圆柱的表面积公式是什么
圆柱的表面积公式为:S表=侧面积+两个底面积=2πrh+2πr^2。圆柱圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。直圆柱也叫正圆柱、圆柱,就是底面和顶面是同样半径(r)的圆,...
圆柱表面积和体积的字母计算公式
表面积S=2*π*r^2+2πrh (h为圆柱的高)体积v=π*r^2*h 注意:*是乘法,^是平方谢谢