问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

x→0时,tanx-x~?

发布网友 发布时间:2022-04-24 02:26

我来回答

5个回答

热心网友 时间:2023-10-21 23:05

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

拓展资料

tanx泰勒展开式推导过程是什么样的?

1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|<π/2)【注:B(2n-1)是贝努利数】

2、定义:数学中, 泰勒公式是一个用 函数在某点的信息描述其附近取值的公式。如果函数足够 平滑的话,在已知函数在某一点的各阶 导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

3、命名于:泰勒公式得名于英国数学家布鲁克· 泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

4、泰勒中值定理:

(1)泰勒公式是将一个在x=x 0处具有n阶导数的函数f(x)利用关于(x-x 0)的n次多项式来*近函数的方法。

(2)若函数f(x)在包含x 0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:


其中,

表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x 0处的泰勒展开式,剩余的R n(x)是泰勒公式的余项,是(x-x 0) n的高阶无穷小。、

泰勒简介

18世纪早期 英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在英格兰德尔塞克斯郡的 埃德蒙顿市出生。1701年,泰勒进 剑桥大学的圣约翰学院学习。1709年后移居 伦敦,获得法学学士学位。

1712年当选为 英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年1 2月29日于 伦敦逝世。

泰勒以微积分学中将 函数展开成无穷 级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。

然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由 拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成 幂级数;同时亦使 泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了 微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常 微分方程的奇异解,曲率问题之研究等。 

泰勒公式发展过程

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。 

热心网友 时间:2023-10-21 23:05

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

拓展资料

tanx泰勒展开式推导过程是什么样的?

1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|<π/2)【注:B(2n-1)是贝努利数】

2、定义:数学中, 泰勒公式是一个用 函数在某点的信息描述其附近取值的公式。如果函数足够 平滑的话,在已知函数在某一点的各阶 导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

3、命名于:泰勒公式得名于英国数学家布鲁克· 泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

4、泰勒中值定理:

(1)泰勒公式是将一个在x=x 0处具有n阶导数的函数f(x)利用关于(x-x 0)的n次多项式来*近函数的方法。

(2)若函数f(x)在包含x 0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:


其中,

表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x 0处的泰勒展开式,剩余的R n(x)是泰勒公式的余项,是(x-x 0) n的高阶无穷小。、

泰勒简介

18世纪早期 英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在英格兰德尔塞克斯郡的 埃德蒙顿市出生。1701年,泰勒进 剑桥大学的圣约翰学院学习。1709年后移居 伦敦,获得法学学士学位。

1712年当选为 英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年1 2月29日于 伦敦逝世。

泰勒以微积分学中将 函数展开成无穷 级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。

然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由 拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成 幂级数;同时亦使 泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了 微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常 微分方程的奇异解,曲率问题之研究等。 

泰勒公式发展过程

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。 

热心网友 时间:2023-10-21 23:06

在x趋于0的时候,tanx是等价于x的。

所以lim(x-0)(tanx-x)的极限是0。


拓展资料

Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。

两角和差公式:

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

tan(a+b+c)=tanα+tanb+tanc-tanatanbtanc/1-tanatanb-tanctanb-tanatanc

二倍角公式:

tan2α=(2tanα)/(1-tan²α)

参考资料:百度百科正切

热心网友 时间:2023-10-21 23:06

这道题本质上是一道求极限的问题。在x趋于0的时候,tanx是等价于x的。所以当x趋近于0时,tanx-x也趋近于0。

扩展资料

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。常常遵循这样几个判定数列极限的定理:夹*准则、单调有界准则、柯西准则。

参考资料

函数极限-百度百科

热心网友 时间:2023-10-21 23:06

在x趋于0的时候,tanx是等价于x的。

所以lim(x-0)(tanx-x)的极限是0。


拓展资料

Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。

两角和差公式:

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

tan(a+b+c)=tanα+tanb+tanc-tanatanbtanc/1-tanatanb-tanctanb-tanatanc

二倍角公式:

tan2α=(2tanα)/(1-tan²α)

参考资料:百度百科正切

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,所以 tanx - x ~ 1/3*x^3 。

热心网友 时间:2023-10-21 23:06

这道题本质上是一道求极限的问题。在x趋于0的时候,tanx是等价于x的。所以当x趋近于0时,tanx-x也趋近于0。

扩展资料

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。常常遵循这样几个判定数列极限的定理:夹*准则、单调有界准则、柯西准则。

参考资料

函数极限-百度百科

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,所以 tanx - x ~ 1/3*x^3 。

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

热心网友 时间:2023-10-21 23:05

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

拓展资料

tanx泰勒展开式推导过程是什么样的?

1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|<π/2)【注:B(2n-1)是贝努利数】

2、定义:数学中, 泰勒公式是一个用 函数在某点的信息描述其附近取值的公式。如果函数足够 平滑的话,在已知函数在某一点的各阶 导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

3、命名于:泰勒公式得名于英国数学家布鲁克· 泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

4、泰勒中值定理:

(1)泰勒公式是将一个在x=x 0处具有n阶导数的函数f(x)利用关于(x-x 0)的n次多项式来*近函数的方法。

(2)若函数f(x)在包含x 0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:


其中,

表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x 0处的泰勒展开式,剩余的R n(x)是泰勒公式的余项,是(x-x 0) n的高阶无穷小。、

泰勒简介

18世纪早期 英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在英格兰德尔塞克斯郡的 埃德蒙顿市出生。1701年,泰勒进 剑桥大学的圣约翰学院学习。1709年后移居 伦敦,获得法学学士学位。

1712年当选为 英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年1 2月29日于 伦敦逝世。

泰勒以微积分学中将 函数展开成无穷 级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。

然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由 拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成 幂级数;同时亦使 泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了 微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常 微分方程的奇异解,曲率问题之研究等。 

泰勒公式发展过程

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。 

热心网友 时间:2023-10-21 23:06

在x趋于0的时候,tanx是等价于x的。

所以lim(x-0)(tanx-x)的极限是0。


拓展资料

Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。

两角和差公式:

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

tan(a+b+c)=tanα+tanb+tanc-tanatanbtanc/1-tanatanb-tanctanb-tanatanc

二倍角公式:

tan2α=(2tanα)/(1-tan²α)

参考资料:百度百科正切

热心网友 时间:2023-10-21 23:06

这道题本质上是一道求极限的问题。在x趋于0的时候,tanx是等价于x的。所以当x趋近于0时,tanx-x也趋近于0。

扩展资料

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。常常遵循这样几个判定数列极限的定理:夹*准则、单调有界准则、柯西准则。

参考资料

函数极限-百度百科

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,所以 tanx - x ~ 1/3*x^3 。

热心网友 时间:2023-10-21 23:07

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。
x→0时,tanx-x~?

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ...,所以 tanx - x ~ 1/3*x^3 。

minimax x4

Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工业制造等。其精确的操控能力和高效的工作效率深受用户好评。我们致力于不断创新,为用户提供更智能、更便捷的产品和服务。选择Minimax 电商平台4,共创智能未来。ppbRAE 3000是一款当今市场广谱手持式挥发性有机化合物(VOC)气体检测仪,pgm7340采用RAE较新的第三代光离子化检测器(PID),提高了检测精度和响应时间,检测范围达到1ppb-10000ppm,通过无线模块可以实现与控制台的无线数据传输和远程监控。可...

x→0时,tanx-x~

在x趋于0的时候,tanx是等价于x的。所以lim(x-0)(tanx-x)的极限是0。

为什么当x趋于0的时候, tanx- x趋近于0呢?

这道题本质上是一道求极限的问题。在x趋于0的时候,tanx是等价于x的。所以当x趋近于0时,tanx-x也趋近于0。

为什么当x趋近于0的时候tanx~x,泰勒展开式是x+1/3x^3+o啊?

x→0时,“tanx~x”和“tanx~泰勒展开式”本质是一样的。其原因是,∵x∈R时,tanx的泰勒级数展开式/麦克劳林级数是tanx=x+x³/3+……=∑[1/(2n+1)]x^(2n+1),n=0,1,2,…∞,∴x→0时,tanx=x+O(x)=x+x³/3+O(x³)=x+x³/3+(x^7)/7+O(x...

tanx-x的等价无穷小是什么?

具体回答如下:x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x 所以e^tan-e^x等价于tanx-x x→0时,tanx-x等价于x^n,=lim(x→0) (tanx-x)/x^n =lim(x→0) ((secx)^2-1)/nx^(n-1)=lim(x→0) (tanx)^2/nx^(n-1)=lim(x→0) x^2/nx^(n-1)=lim(x→0) x^(3...

当x趋向于0时,tanx~x是等价无穷小的证明

lim(x→0)tanx/x =lim(x→0)(sinx/x)*1/cosx sinx/x极限是1,1/cosx极限也是1 所以lim(x→0)tanx/x=1 所以tanx~x

求解,x趋于0时,tanx-x=?详解,也可图解

构造单位圆,利用面积法,可证明。(夹逼法则)

tanx-x的等价无穷小

具体回答如下:x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x 所以e^tan-e^x等价于tanx-x x→0时,tanx-x等价于x^n,=lim(x→0) (tanx-x)/x^n =lim(x→0) ((secx)^2-1)/nx^(n-1)=lim(x→0) (tanx)^2/nx^(n-1)=lim(x→0) x^2/nx^(n-1)=lim(x→0) x^(3...

当x趋向于0时,tanx~x是等价无穷小的证明

sinx/x极限是1,1/cosx极限也是1 所以lim(x→0)tanx/x=1 所以tanx~x 性质 1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、若函数在某的空心邻域内有界,则称g为当时的有界量。5、有限个无穷小量之和仍是无穷小量。6、...

tanx- x=3吗?为什么?

e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x。所以e^tan-e^x等价于tanx-x。所以,x→0时,tanx-x等价于x^n,所以:1=lim(x→0)(tanx-x)/x^n =lim(x→0)((secx)^2-1)/nx^(n-1)=lim(x→0)(tanx)^2/nx^(n-1)=lim(x→0)x^...

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
以“美丽的瞬间”为题目,写一篇文章。要求:①除诗歌外,文体不限②不... “一直被模仿,从未被超越。”怎么翻译成英文? 家用电烤箱烤一只鸡要多久 家用烤箱烤鸡需要多长时间? 家庭烤鸡要多少温度和时间 烤箱烤鸡多久 aca烤箱烤鸡要多久 电烤箱烤鸡需要多久 烤箱烤鸡考多久 烤箱里 烤鸡要多久 家用烤箱烤鸡烤多久 几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 经典力学中的定律 证明三点或四点共圆,根据哪些定理? 热转印纸能用普通打印机打印后 转印到杯子上吗? 5天自驾游,九月份从北京出发,去哪玩最好? 从北京到平遥古城怎么走?有没有什么路线图?谢谢~ 十一自驾游4天北京出发去山西,平遥古城,王家大院,乔家大院请专家给设计一条最短的路线。 北京到山西自驾游路线及景点 短位qq号的获得渠道 YY短位使用不够标准的问题? 从北京到山西平遥古城和王家大院或者乔家大院玩,具体路线是怎样? 王家大院和乔家大院哪个更好玩? 北京到平遥古城到壶口瀑布自驾怎么走 短位的QQ是什么意思 谁知道从北京开车到山西平遥古城一路的费用大概是多少? 从北京出发自驾游,往返5天行程,都有哪些好的路线? 复古蓝色牛仔裤配什么颜色好看 两个人想从北京去平遥和王家大院,自由行,应该如何安排呢? 牛仔外套想要穿出高级复古风,学三木搭配卡其色长裤,有多美? 北京到山西自驾5日游,最好能玩到平遥古城、王家大院、五台山、悬空寺、云冈石窟、晋祠。怎么走最方便。 怎样才能申请到短位YY频道号? 两个向量互相垂直有什么公式 初中数学所有公式定律 信息的不灭性怎么理解? 两个点三个点四个点五个点六个点可以画多少个直线有什么规律jack 两个向量垂直有什么结论 男女关系中,懂哪三个“经典定律”,感情才能长久呢? “不共线的三点确定惟一一个平面”这句话是公理还是定理?若是定理请证明一下,若是公理就不要证明了 求几个有用的数学定理公式 什么是以太定律啊? 基尔霍夫定律包括哪两个定律?它们的内容分别是什么 怎么用纸做帅气的枪 怎样用纸折怎样用纸折枪能发子弹 海贼王里的&quot;人造人&quot;弗兰奇是什么样子 犭字旁再加个虎字念什么 天津有哪些电影院?都怎么去呀? 科幻诗歌 我把文件删除到了回收站里,可是在回收站里文件删除不了显示。无法删除nul.dll参数不正确 更换硬盘后原装win7激活密钥怎么用系统激活不了 邀请邀请崔衍渠老师回答 老师我好像中IGM一类的病毒了 跪求win7 32位GHO镜像文件