发布网友 发布时间:2023-05-17 16:32
共1个回答
热心网友 时间:2023-09-15 03:46
1.高一数学必修三重点知识归纳 篇一
排列数与组合数的关系:
排列与组合的联系与区别:
从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(m≤n,n,m∈N)元素,这是排列与组合的共同点。它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a,b与b,a是两个不同的排列,但却是同一个组合。
排列应用题的最基本的解法有:
(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;
(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
2.高一数学必修三重点知识归纳 篇二
均匀随机数
均匀随机数的产生:
我们常用的是[0,1]上的均匀随机数,如果试验的结果是区间[0,1]内的任何一个数,而且出现任何一个实数是等可能的,因此就可以用计算器来产生0~1之间的均匀随机数进行随机模拟,我们常用随机模拟的方法来计算不规则图形的面积。
均匀随机函数:
均匀随机函数且只能产生[0,1]区间上均匀随机数。
产生[a,b]区间上均匀随机数:
产生[a,b]区间上均匀随机数,如果x是[0,1]区间上的均匀随机数,则x(b-a)+a就是[a,b]区间上的均匀随机数。
计算机通过产生均匀随机数进行模拟实验的思路:
(1)根据影响随机事件结果的量的个数确定需要产生的随机数的个数,如长度、角度型只用一组即可;而面积型需要两组随机数,体积型需要三组随机数;
(2)根据总体对应的区域确定产生随机数的范围;
(3)根据事件A发生的条件确定随机数所应满足的关系式。
3.高一数学必修三重点知识归纳 篇三
函数定义域:
能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零
(2)偶次方根的被开方数不小于零
(3)对数式的真数必须大于零
(4)指数、对数式的底必须大于零且不等于1
(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的函数
(6)指数为零底不可以等于零
(7)实际问题中的函数的定义域还要保证实际问题有意义
相同函数的判断方法:
①表达式相同(与表示自变量和函数值的字母无关)
②定义域一致(两点必须同时具备)
4.高一数学必修三重点知识归纳 篇四
函数的解析表达式
(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
3)换元法
4)消参法
5.高一数学必修三重点知识归纳 篇五
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)