发布网友 发布时间:2022-04-24 00:44
共2个回答
懂视网 时间:2022-08-13 09:48
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(α+k*2π)=sinα(k为整数);cos(α+k*2π)=cosα(k为整数);tan(α+k*2π)=tanα(k为整数)。
2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin[(2k+1)π+α]=-sinα;cos[(2k+1)π+α]=-cosα;tan[(2k+1)π+α]=tanα;cot[(2k+1)π+α]=cotα。
3、公式三:任意角α与-α的三角函数值之间的关系:sin(2k-α)=-sinα;cos(2k-α)=cosα;tan(2k-α)=-tanα;cot(2k-α)=-cotα。
4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin[(2k+1)π-α]=sinα;cos[(2k+1)π-α]=-cosα;tan[(2k+1)π-α]=-tanα;cot[(2k+1)π-α]=-cotα。
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2kπ-α)=-sinα;cos(2kπ-α)=cosα;tan(2kπ-α)=-tanα;cot(2kπ-α)=-cotα。
6、公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα;cos(π/2+α)=-sinα;tan(π/2+α)=-cotα;cot(π/2+α)=-tanα;sin(π/2-α)=cosα;cos(π/2-α)=sinα;tan(π/2-α)=cotα;cot(π/2-α)=tanα。
7、诱导公式记背诀窍:奇变偶不变,符号看象限。
热心网友 时间:2024-02-10 11:54
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
二、降幂公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推导公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、两角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化积
1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、积化和差
1、sinαsinβ = [cos(α-β)-cos(α+β)] /2
2、sinαcosβ = [sin(α+β)+sin(α-β)]/2
3、cosαsinβ = [sin(α+β)-sin(α-β)]/2
七、诱导公式
1、(-α) = -sinα、cos(-α) = cosα
2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα
3、3cos(π/2+α) = -sinα
4、(π-α) = sinα、cos(π-α) = -cosα
5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、锐角三角函数公式
1、sin α=∠α的对边 / 斜边
2、α=∠α的邻边 / 斜边
3、tan α=∠α的对边 / ∠α的邻边
4、cot α=∠α的邻边 / ∠α的对边
热心网友 时间:2024-02-10 11:54
诱导公式