问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

求高中数学公式概念总结!

发布网友 发布时间:2022-04-24 05:02

我来回答

3个回答

热心网友 时间:2023-10-30 12:47

高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则

( ).

参考资料:http://www.xyjy.cn/Article/Uploa ... 051013100307519.doc

热心网友 时间:2023-10-30 12:47

▲№№◆ △←◇ _◇ ▲ △←◇ ̄ _◇ →☆ #←○◎◆

热心网友 时间:2023-10-30 12:48

高中数学常用公式及常用结论
1.元素与集合的关系
,.
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合
的子集个数共有
个;真子集有
–1个;非空子集有
–1个;非空的真子集有
–2个.
6.二次函数的解析式的三种形式
(1)一般式
;
(2)顶点式
;
(3)零点式
.
7.解连不等式
常有以下转化形式
.
8.方程

上有且只有一个实根,与
不等价,前者是后者的一个必要而不是充分条件.特别地,方程
有且只有一个实根在
内,等价于
,或

,或

.
9.闭区间上的二次函数的最值
二次函数
在闭区间
上的最值只能在
处及区间的两端点处取得,具体如下:
(1)当a>0时,若
,则

,,.
(2)当a0)
(1)
,则
的周期T=a;
(2)
,

,

,

,则
的周期T=2a;
(3)
,则
的周期T=3a;
(4)

,则
的周期T=4a;
(5)
,则
的周期T=5a;
(6)
,则
的周期T=6a.
30.分数指数幂
(1)

,且
).
(2)

,且
).
31.根式的性质
(1)
.
(2)当
为奇数时,;

为偶数时,.
32.有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
(
,且
,,且
,).
推论
(
,且
,,且
,,).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
;
(2)
;
(3)
.
36.设函数
,记
.若
的定义域为
,则
,且
;若
的值域为
,则
,且
.对于
的情形,需要单独检验.
37.对数换底不等式及其推广

,,,,则函数
(1)当
时,在


为增函数.
,(2)当
时,在


为减函数.
推论:设
,,,且
,则
(1)
.
(2)
.
38.平均增长率的问题
如果原来产值的基础数为N,平均增长率为
,则对于时间
的总产值
,有
.
39.数列的同项公式与前n项的和的关系
(
数列
的前n项的和为
).
40.等差数列的通项公式

其前n项和公式为
.
41.等比数列的通项公式

其前n项的和公式为

.
42.等比差数列
:的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款
元(贷款
元,次还清,每期利率为
).
44.常见三角不等式
(1)若
,则
.
(2)

,则
.
(3)
.
45.同角三角函数的基本关系式
,=
,.
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
=
(辅助角
所在象限由点
的象限决定,).
48.二倍角公式
.
.
.
49.三倍角公式
.
..
50.三角函数的周期公式
函数
,x∈R及函数
,x∈R(A,ω,为常数,且A≠0,ω>0)的周期
;函数
,(A,ω,为常数,且A≠0,ω>0)的周期
.
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1)

分别表示a、b、c边上的高).
(2)
.
(3)
.
54.三角形内角和定理
在△ABC中,有
.
55.简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1)
结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1)
a•b=
b•a
(交换律);
(2)(
a)•b=
(a•b)=
a•b=
a•(
b);
(3)(a+b)•c=
a
•c
+b•c.
59.平面向量基本定理
如果e1、e
2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a=
,b=
,且b
0,则a
b(b
0)
.
53.a与b的数量积(或内积)
a•b=|a||b|cosθ.
61.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a=
,b=
,则a+b=
.
(2)设a=
,b=
,则a-b=
.
(3)设A
,B
,则
.
(4)设a=
,则
a=
.
(5)设a=
,b=
,则a•b=
.
63.两向量的夹角公式
(a=
,b=
).
64.平面两点间的距离公式
=
(A
,B
).
65.向量的平行与垂直
设a=
,b=
,且b
0,则
A||b
b=λa
.
a
b(a
0)
a•b=0
.
66.线段的定比分公式

,,是线段
的分点,是实数,且
,则

).

热心网友 时间:2023-10-30 12:47

高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则

( ).

参考资料:http://www.xyjy.cn/Article/Uploa ... 051013100307519.doc

热心网友 时间:2023-10-30 12:47

▲№№◆ △←◇ _◇ ▲ △←◇ ̄ _◇ →☆ #←○◎◆

热心网友 时间:2023-10-30 12:48

高中数学常用公式及常用结论
1.元素与集合的关系
,.
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合
的子集个数共有
个;真子集有
–1个;非空子集有
–1个;非空的真子集有
–2个.
6.二次函数的解析式的三种形式
(1)一般式
;
(2)顶点式
;
(3)零点式
.
7.解连不等式
常有以下转化形式
.
8.方程

上有且只有一个实根,与
不等价,前者是后者的一个必要而不是充分条件.特别地,方程
有且只有一个实根在
内,等价于
,或

,或

.
9.闭区间上的二次函数的最值
二次函数
在闭区间
上的最值只能在
处及区间的两端点处取得,具体如下:
(1)当a>0时,若
,则

,,.
(2)当a0)
(1)
,则
的周期T=a;
(2)
,

,

,

,则
的周期T=2a;
(3)
,则
的周期T=3a;
(4)

,则
的周期T=4a;
(5)
,则
的周期T=5a;
(6)
,则
的周期T=6a.
30.分数指数幂
(1)

,且
).
(2)

,且
).
31.根式的性质
(1)
.
(2)当
为奇数时,;

为偶数时,.
32.有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
(
,且
,,且
,).
推论
(
,且
,,且
,,).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
;
(2)
;
(3)
.
36.设函数
,记
.若
的定义域为
,则
,且
;若
的值域为
,则
,且
.对于
的情形,需要单独检验.
37.对数换底不等式及其推广

,,,,则函数
(1)当
时,在


为增函数.
,(2)当
时,在


为减函数.
推论:设
,,,且
,则
(1)
.
(2)
.
38.平均增长率的问题
如果原来产值的基础数为N,平均增长率为
,则对于时间
的总产值
,有
.
39.数列的同项公式与前n项的和的关系
(
数列
的前n项的和为
).
40.等差数列的通项公式

其前n项和公式为
.
41.等比数列的通项公式

其前n项的和公式为

.
42.等比差数列
:的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款
元(贷款
元,次还清,每期利率为
).
44.常见三角不等式
(1)若
,则
.
(2)

,则
.
(3)
.
45.同角三角函数的基本关系式
,=
,.
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
=
(辅助角
所在象限由点
的象限决定,).
48.二倍角公式
.
.
.
49.三倍角公式
.
..
50.三角函数的周期公式
函数
,x∈R及函数
,x∈R(A,ω,为常数,且A≠0,ω>0)的周期
;函数
,(A,ω,为常数,且A≠0,ω>0)的周期
.
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1)

分别表示a、b、c边上的高).
(2)
.
(3)
.
54.三角形内角和定理
在△ABC中,有
.
55.简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1)
结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1)
a•b=
b•a
(交换律);
(2)(
a)•b=
(a•b)=
a•b=
a•(
b);
(3)(a+b)•c=
a
•c
+b•c.
59.平面向量基本定理
如果e1、e
2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a=
,b=
,且b
0,则a
b(b
0)
.
53.a与b的数量积(或内积)
a•b=|a||b|cosθ.
61.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a=
,b=
,则a+b=
.
(2)设a=
,b=
,则a-b=
.
(3)设A
,B
,则
.
(4)设a=
,则
a=
.
(5)设a=
,b=
,则a•b=
.
63.两向量的夹角公式
(a=
,b=
).
64.平面两点间的距离公式
=
(A
,B
).
65.向量的平行与垂直
设a=
,b=
,且b
0,则
A||b
b=λa
.
a
b(a
0)
a•b=0
.
66.线段的定比分公式

,,是线段
的分点,是实数,且
,则

).

热心网友 时间:2023-10-30 12:47

高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则

( ).

参考资料:http://www.xyjy.cn/Article/Uploa ... 051013100307519.doc

热心网友 时间:2023-10-30 12:47

▲№№◆ △←◇ _◇ ▲ △←◇ ̄ _◇ →☆ #←○◎◆

热心网友 时间:2023-10-30 12:48

高中数学常用公式及常用结论
1.元素与集合的关系
,.
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合
的子集个数共有
个;真子集有
–1个;非空子集有
–1个;非空的真子集有
–2个.
6.二次函数的解析式的三种形式
(1)一般式
;
(2)顶点式
;
(3)零点式
.
7.解连不等式
常有以下转化形式
.
8.方程

上有且只有一个实根,与
不等价,前者是后者的一个必要而不是充分条件.特别地,方程
有且只有一个实根在
内,等价于
,或

,或

.
9.闭区间上的二次函数的最值
二次函数
在闭区间
上的最值只能在
处及区间的两端点处取得,具体如下:
(1)当a>0时,若
,则

,,.
(2)当a0)
(1)
,则
的周期T=a;
(2)
,

,

,

,则
的周期T=2a;
(3)
,则
的周期T=3a;
(4)

,则
的周期T=4a;
(5)
,则
的周期T=5a;
(6)
,则
的周期T=6a.
30.分数指数幂
(1)

,且
).
(2)

,且
).
31.根式的性质
(1)
.
(2)当
为奇数时,;

为偶数时,.
32.有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
(
,且
,,且
,).
推论
(
,且
,,且
,,).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
;
(2)
;
(3)
.
36.设函数
,记
.若
的定义域为
,则
,且
;若
的值域为
,则
,且
.对于
的情形,需要单独检验.
37.对数换底不等式及其推广

,,,,则函数
(1)当
时,在


为增函数.
,(2)当
时,在


为减函数.
推论:设
,,,且
,则
(1)
.
(2)
.
38.平均增长率的问题
如果原来产值的基础数为N,平均增长率为
,则对于时间
的总产值
,有
.
39.数列的同项公式与前n项的和的关系
(
数列
的前n项的和为
).
40.等差数列的通项公式

其前n项和公式为
.
41.等比数列的通项公式

其前n项的和公式为

.
42.等比差数列
:的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款
元(贷款
元,次还清,每期利率为
).
44.常见三角不等式
(1)若
,则
.
(2)

,则
.
(3)
.
45.同角三角函数的基本关系式
,=
,.
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
=
(辅助角
所在象限由点
的象限决定,).
48.二倍角公式
.
.
.
49.三倍角公式
.
..
50.三角函数的周期公式
函数
,x∈R及函数
,x∈R(A,ω,为常数,且A≠0,ω>0)的周期
;函数
,(A,ω,为常数,且A≠0,ω>0)的周期
.
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1)

分别表示a、b、c边上的高).
(2)
.
(3)
.
54.三角形内角和定理
在△ABC中,有
.
55.简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1)
结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1)
a•b=
b•a
(交换律);
(2)(
a)•b=
(a•b)=
a•b=
a•(
b);
(3)(a+b)•c=
a
•c
+b•c.
59.平面向量基本定理
如果e1、e
2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a=
,b=
,且b
0,则a
b(b
0)
.
53.a与b的数量积(或内积)
a•b=|a||b|cosθ.
61.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a=
,b=
,则a+b=
.
(2)设a=
,b=
,则a-b=
.
(3)设A
,B
,则
.
(4)设a=
,则
a=
.
(5)设a=
,b=
,则a•b=
.
63.两向量的夹角公式
(a=
,b=
).
64.平面两点间的距离公式
=
(A
,B
).
65.向量的平行与垂直
设a=
,b=
,且b
0,则
A||b
b=λa
.
a
b(a
0)
a•b=0
.
66.线段的定比分公式

,,是线段
的分点,是实数,且
,则

).

热心网友 时间:2023-10-30 12:47

高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式

47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则

( ).

参考资料:http://www.xyjy.cn/Article/Uploa ... 051013100307519.doc

热心网友 时间:2023-10-30 12:47

▲№№◆ △←◇ _◇ ▲ △←◇ ̄ _◇ →☆ #←○◎◆

热心网友 时间:2023-10-30 12:48

高中数学常用公式及常用结论
1.元素与集合的关系
,.
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合
的子集个数共有
个;真子集有
–1个;非空子集有
–1个;非空的真子集有
–2个.
6.二次函数的解析式的三种形式
(1)一般式
;
(2)顶点式
;
(3)零点式
.
7.解连不等式
常有以下转化形式
.
8.方程

上有且只有一个实根,与
不等价,前者是后者的一个必要而不是充分条件.特别地,方程
有且只有一个实根在
内,等价于
,或

,或

.
9.闭区间上的二次函数的最值
二次函数
在闭区间
上的最值只能在
处及区间的两端点处取得,具体如下:
(1)当a>0时,若
,则

,,.
(2)当a0)
(1)
,则
的周期T=a;
(2)
,

,

,

,则
的周期T=2a;
(3)
,则
的周期T=3a;
(4)

,则
的周期T=4a;
(5)
,则
的周期T=5a;
(6)
,则
的周期T=6a.
30.分数指数幂
(1)

,且
).
(2)

,且
).
31.根式的性质
(1)
.
(2)当
为奇数时,;

为偶数时,.
32.有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
(
,且
,,且
,).
推论
(
,且
,,且
,,).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
;
(2)
;
(3)
.
36.设函数
,记
.若
的定义域为
,则
,且
;若
的值域为
,则
,且
.对于
的情形,需要单独检验.
37.对数换底不等式及其推广

,,,,则函数
(1)当
时,在


为增函数.
,(2)当
时,在


为减函数.
推论:设
,,,且
,则
(1)
.
(2)
.
38.平均增长率的问题
如果原来产值的基础数为N,平均增长率为
,则对于时间
的总产值
,有
.
39.数列的同项公式与前n项的和的关系
(
数列
的前n项的和为
).
40.等差数列的通项公式

其前n项和公式为
.
41.等比数列的通项公式

其前n项的和公式为

.
42.等比差数列
:的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款
元(贷款
元,次还清,每期利率为
).
44.常见三角不等式
(1)若
,则
.
(2)

,则
.
(3)
.
45.同角三角函数的基本关系式
,=
,.
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
=
(辅助角
所在象限由点
的象限决定,).
48.二倍角公式
.
.
.
49.三倍角公式
.
..
50.三角函数的周期公式
函数
,x∈R及函数
,x∈R(A,ω,为常数,且A≠0,ω>0)的周期
;函数
,(A,ω,为常数,且A≠0,ω>0)的周期
.
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1)

分别表示a、b、c边上的高).
(2)
.
(3)
.
54.三角形内角和定理
在△ABC中,有
.
55.简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1)
结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1)
a•b=
b•a
(交换律);
(2)(
a)•b=
(a•b)=
a•b=
a•(
b);
(3)(a+b)•c=
a
•c
+b•c.
59.平面向量基本定理
如果e1、e
2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a=
,b=
,且b
0,则a
b(b
0)
.
53.a与b的数量积(或内积)
a•b=|a||b|cosθ.
61.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a=
,b=
,则a+b=
.
(2)设a=
,b=
,则a-b=
.
(3)设A
,B
,则
.
(4)设a=
,则
a=
.
(5)设a=
,b=
,则a•b=
.
63.两向量的夹角公式
(a=
,b=
).
64.平面两点间的距离公式
=
(A
,B
).
65.向量的平行与垂直
设a=
,b=
,且b
0,则
A||b
b=λa
.
a
b(a
0)
a•b=0
.
66.线段的定比分公式

,,是线段
的分点,是实数,且
,则

).
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
U盘更新专用需要电脑打开怎么让我的U盘和电脑文件夹同步更新啊_百度知 ... 为什么我的硬盘一打开就弹出对话框说选择打开方式. 倒霉的是右键也打... 磁盘右键是打开方式怎么办 我双机盘符总是打开 打开方式 让我选择,右健第一项是打开.不知道是中了... 罗技Lightspeed怎么用? 罗技无线鼠标怎么样?怎么连接电脑使用? 为什么不建议去融资公司上班 融资担保公司一般账务处理及所涉及的会计科目有哪些 月经期间可以游泳吗 经期能不能游泳 公式法的概念,要详细的,还要有例题 佳能MG3680从电脑打印浏览器网页打印不了,WPS也打印不了,是怎么回事,请求高人指导! 在Excel中函数和公式的概念和作用的简答? 小学公式概念总结 初中数学所有公式概念 数学公式的概率与逻辑归纳 数学中什么是概念,什么是公式? Excel函数与公式的概念是什么? intellij 怎么查看快捷键 idea有没有类似eclipse的 proble视窗 可以查看所有的错误 idea或eclipse中如何快速将光标定位类的声明处? 《我应该怎样上课 》日记 50字 大学是怎么上课的? 如何在Idea中让实现类的方法自动 怎么上课 如何查看intellij idea当前运行状况 idea查看源码的方式可以像eclipse那样吗 辅导班是怎样上课的? intellij idea查找某个字段在哪些文件中使用了的快捷键 在职研究生如何上课?有几种形式? 小学1~6年级所有数学公式概念(人教版)要全! mg3680复印资料不全什么原因 求小学数学全部的公式与概念 c+v+m公式的概念是什么? 高中数学公式定理概念 小学数学所有公式和概念 初中物理考试中常见公式及概念 初中物理所有的公式和概念 秘书应该怎样做好印章管理工作以及发文用印章时+应该注意哪些事项?_百度问一问 人事档案如何编号 怎样把word格式的文字设置成文格式的样式呀? 关于什么的修改意见的公文格式 属虎和属龙婚姻好不好 属虎与属龙的婚姻如何? 属虎和属龙的婚姻会是怎么样? 属虎的和属龙的能结婚吗?? 属龙和属虎的人婚姻匹配吗 属虎的和属龙的婚姻般配吗 男属虎和女属龙结婚合适么? 属龙的能和属虎的在一起结婚吗?