发布网友 发布时间:2022-05-05 20:27
共1个回答
热心网友 时间:2022-06-28 01:27
三分之二π等于120度。一个完整的圆的弧度是2π,所以:2π rad=360°,1π rad=180°,2/3π rad=120°。
角度制与弧度制的换算,主要把握180°=1π rad这个关系式。例如:1°=π /180 rad,30度转换成弧度值:弧度=30°×π /180°。
扩展资料:
弧度制之所以能成为当今数学主要的角的单位制度,主要原因有二:
(一)使进位制统一。在古巴比伦以及古希腊时期,数学家在研究天文学问题时,普遍习惯使用60进制对角进行度量,为了进位制的统一,也用60进制度量弦长和弧长。此时,角度制满足了这种需求。而随着历史的发展,10进制取代了60进制成为了度量长度的主要进位制。
为了保持进位制的统一,自然地也将角的进位制换成10进制。弧度制满足了这一需求,而且可以与角度制进行一一对应的换算,与原有数学系统相容。这样,在查阅三角函数表时就可以看到用统一进位制表示的数,便于数与数之间的对比,提高解决问题的效率。
(二)简化微积分创立后公式的计算.弧度制大约直到18世纪才被提出来,它的提出是受到微积分等近代数学发展的推动的。在弧度制下,与三角函数有关的一些公式在形式上均比角度制下有很大的简化。正是因为这样的优越性,弧度制才逐渐被数学界普遍接受和广泛使用。