发布网友 发布时间:2024-02-09 02:55
共5个回答
热心网友 时间:2024-03-04 13:58
线性代数行列式有如下计算技巧:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
线性代数行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
扩展资料:
线性代数重要定理:
1、每一个线性空间都有一个基。
2、对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E,则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
3、矩阵非奇异(可逆)当且仅当它的行列式不为零。
4、矩阵非奇异当且仅当它代表的线性变换是个自同构。
5、矩阵半正定当且仅当它的每个特征值大于或等于零。
6、矩阵正定当且仅当它的每个特征值都大于零。
7、解线性方程组的克拉默法则。
8、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
注:线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
参考资料来源:百度百科-行列式
参考资料来源:百度百科-线性代数
热心网友 时间:2024-03-04 13:58
线性代数行列式的计算技巧:
1.利用行列式定义直接计算
例1 计算行列式
解 Dn中不为零的项用一般形式表示为
该项列标排列的逆序数t(n-1 n-2„1n)等于,故
2.利用行列式的性质计算
例2 一个n阶行列式的元素满足
则称Dn为反对称行列式,证明:奇数阶反对称行列式为零.
证明:由 知,即
故行列式Dn可表示为
由行列式的性质
当n为奇数时,得Dn =-Dn,因而得Dn = 0.。
3.化为三角形行列式
若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。
4.降阶法
降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
5.递推公式法
递推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1, Dn-2之间的一种关系——称为递推公式(其中Dn, Dn-1, Dn-2等结构相同),再由递推公式求出Dn的方法称为递推公式法。
6.利用范德蒙行列式
7.加边法(升阶法)
加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。
8.数学归纳法
9.拆开法
把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。
热心网友 时间:2024-03-04 13:59
了解。热心网友 时间:2024-03-04 13:59
首先以第一行第一列的数据为基础,通过初等行变换将第一列中a11下面的数据变为0;再以第二行第二列的数据为基础,通过初等行变换将第二列中a22下面的数据变为0;以此类推,直至将行列式变为正三角行列式的形式,将对角线上的数据相乘计算即可。(可根据自己的计算习惯进行改进) 一般思路就是将行列式转化为三角行列式的形式进行计算。热心网友 时间:2024-03-04 14:00
首先你要把行列式的某行(列)的数化简到只有一个是非零的,然后按行列式的余阶子式将n*n的行列式化简成(n-1)*(n-1)的行列式化到3*3就可以算了