大数据和「数据挖掘」是何关系?
发布网友
发布时间:2022-04-20 22:16
我来回答
共1个回答
热心网友
时间:2022-07-11 06:23
数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。数据挖掘的定义是从海量数据中找到有意义的模式或知识。
大数据是近几年提出来。有三个重要的特征:数据量大,结构复杂,数据更新速度很快。由于Web技术的发展,web用户产生的数据自动保存、传感器也在不断收集数据,以及移动互联网的发展,数据自动收集、存储的速度在加快,全世界的数据量在不断膨胀,数据的存储和计算超出了单个计算机(小型机和大型机)的能力,这给数据挖掘技术的实施提出了挑战(一般而言,数据挖掘的实施基于一台小型机或大型机,也可以进行并行计算)。Google提出了分布式存储文件系统,发展出后来的云存储和云计算的概念。
大数据需要映射为小的单元进行计算,再对所有的结果进行整合,就是所谓的map-rece算法框架。在单个计算机上进行的计算仍然需要采用一些数据挖掘技术,区别是原先的一些数据挖掘技术不一定能方便地嵌入到 map-rece 框架中,有些算法需要调整。
此外,大数据处理能力的提升也对统计学提出了新的挑战。统计学理论往往建立在样本上,而在大数据时代,可能得到的是总体,而不再是总体的不放回抽样。
大数据和「数据挖掘」是何关系?
数据挖掘的定义是从海量数据中找到有意义的模式或知识。例如国内的灵玖软件这方面做的就不错。大数据需要映射为小的单元进行计算,再对所有的结果进行整合,就是所谓的map-reduce算法框架。在单个计算机上进行的计算仍然需要采用一些数据挖掘技术,区别是原先的一些数据挖掘技术不一定能方便地嵌入到 map-reduce...
大数据分析用什么工具靠谱
美林数据Tempo大数据分析平台,它是一款集数据接入、数据处理、数据挖掘、数据可视化、数据应用于一体的软件产品。它秉持“智能、互动、增值”的设计理念,面向企业级用户提供自助式数据探索与分析能力,为企业提供从BI到AI的一体化数据分析与应...
大数据和「数据挖掘」是何关系?
数据挖掘是一个动作,是研究数据内在的规律,并且通过各种机器学习、统计学习、模型算法进行研究。大数据其实是一种数据的状态,数据多而大,大到超出了人类的数据处理软件的极限。数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于...
大数据 和 数据挖掘 的区别
所以,可以理解成大数据是场景是问题,而数据挖掘是手段。
大数据,数据挖掘,机器学习三者什么区别和联系
大数据是指数据的量,过去数十年数据收集存储的能力大幅提升,人类社会积累的数据量几何级数上升,这是指目前的现状。数据挖掘是从海量数据中获取规则和知识,统计学和机器学习为数据挖掘提供了数据分析的技术手段。
大数据,数据挖掘,机器学习三者什么区别和联系
1、大数据就是许多数据的聚合;2、数据挖掘就是把这些数据的价值发掘出来,比如说你有过去10年的气象数据,通过数据挖掘,你几乎可以预测明天的天气是怎么样的,有较大概率是正确的;3、机器学习嘛说到底它是人工智能的核心啦,你要对大数据进行发掘,靠你人工肯定是做不来的,那就得靠机器,你通过一...
大数据、数据分析和数据挖掘的区别
大数据、数据分析和数据挖掘是信息处理的三个不同阶段,它们各有侧重,但又相互关联。大数据,源自互联网的海量数据,其核心在于发现趋势和发展,强调的是处理速度、多样性和价值,其特点包括Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)和Veracity(真实性)。维克托·迈尔-舍恩伯格的《...
大数据处理和数据挖掘之间是什么关系?
这里涉及到几个概念,大数据、 数据处理、数据挖掘。不管多大的数据都会需要数据处理,只是用的工具和对技术的要求不一样,数据量越大要求越高。所谓的大数据,你可以搜索下,很多解释,基本特点是数量大,更新快,结构复杂,价值密度低,但是价值大。数据挖掘是很大的一个概念,就是从数据中有意识无意识...
大数据的核心技术是什么?是数据挖掘吗?
数据挖掘是一种通过算法和统计分析从大量数据中提取模式和关系,以提供决策支持的科学研究。它是大数据分析的核心技术之一,但并不等同于大数据的全部。大数据指的是无法用常规软件工具在合理时间内捕捉、管理和处理的数据集合,其特点是大量(Volume)、快速(Velocity)和多样(Variety)。数据挖掘包括但不限...
大数据、数据分析和数据挖掘的区别
大数据、数据分析和数据挖掘是信息技术领域中的三个关键概念,它们各有侧重。大数据,这个术语强调的是海量、高速、多样化的信息集合,其核心在于通过所有数据而非抽样分析来发现趋势和发展,其特点包括大量性、高速度、多样性、价值和真实性。数据分析则更偏向于对收集数据的深入解析,通过统计方法得出结论,...
数据科学,数据挖掘,数据工程和大数据之间有什么关系?
数据科学,这个概念应该是最大的,跟数据相关的,都可以算在数据科学的范畴里面,最早开始兴起的时候,也是从国外开始。而国内的话,通常有数据科学与大数据技术的说法,数据科学是一门学科,而大数据技术,就是研究数据科学需要用到的相关技术手段。数据挖掘,简单点来说,就是从海量的数据当中去提取价值...