植物全磷、全氮、全钾的测定
发布网友
发布时间:2022-04-20 22:35
我来回答
共3个回答
热心网友
时间:2023-06-22 23:16
一、植物全氮测定
(一)H2SO4-H2O2消煮法
1、适用范围
本方法不包括硝态氮的植物全氮测定,适合于含硝态氮低的植物样品的测定。
2、方法提要
植物中的氮、磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾的定量。采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。
3、试剂
(1)硫酸(化学纯,比重1.84);
(2)30% H2O2(分析纯)。
4、主要仪器设备。消煮炉,定氮蒸馏器。
5、操作步骤
称取植物样品(0.5mm)0.3~0.5g(称准至0.0002g)装入100ml开氏瓶或消煮管的底部,加浓H2SO45ml,摇匀(最好放置过夜),在电炉或消煮炉上先小火加热,待H2SO4发白烟后再升高温度,当溶液呈均匀的棕黑色时取下。稍冷后加班10滴H2O2(3),再加热至微沸,消煮约7~10min,稍冷后重复加H2O2,,再消煮。如此重复数次,每次添加的H2O2应逐次减少, 消煮至溶液呈无色或清亮后,再加热10min,除去剩余的H2O2。取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用无磷钾的干滤纸过滤,或放置澄清后吸取清液测定氮、磷、钾。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。
6、注释
(1)所用的H2O2应不含氮和磷。H2O2在保存中可能自动分解,加热和光照能促使其分解,故应保存于阴凉处。在H2O2中加入少量H2SO4酸化,可防止H2O2分解。
(2)称样量决定于NPK含量,健状茎叶称0.5g,种子0.3g,老熟茎叶可称1g,若新鲜茎叶样,可按干样的5倍称样。称样量大时,可适当增加浓H2SO4用量。
(3)加H2O2时应直接滴入瓶底液中,如滴在瓶劲内壁上,将不起氧化作用,若遗留下来还会影响磷的显色。
(二)水杨酸-锌粉还原- H2SO4-加速剂消煮法
1、适用范围
包括销态氮的植物全氮测定,适合于硝态氮含量较高的植物样品的测定。
2、方法原理
样品中的硝态氮在室温下与硫酸介质中的水杨酸作用,生成硝基水杨酸,再用硫代硫酸钠及锌粉使硝基水杨酸还原为氨基水杨酸.然后按H2SO4-加速剂消煮法进行消煮法进行消煮样品,使样品中全部氮转化为铵盐。
3、试剂
(1)固体Na2S2O3;
(2)还原锌粉(AR);
(3)水杨酸-硫酸:30g水杨酸溶于1L浓硫酸中。也可以该用含苯酚的浓硫酸:40g苯酚溶于1L浓硫酸中。
4、仪器设备。同上。
5、操作步骤
称取磨细烘干样品(过0.25mm筛)0.1000~0.2000g或新鲜茎叶样品1.000~2.000g,置于100ml开氏瓶或消煮管中,先用水湿润内样品(烘干样),然后加水杨酸-硫酸10ml,摇匀后室温放置30min,加入Na2S2O3约1.5g,锌粉0.4g和水10ml,放置10 min,待还原反应完成后,加入混合加速剂2g,按土壤全氮测定方法进行消煮, 消煮完毕,取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用于滤纸过滤,或放置澄清后吸取清液测定氮。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。
(三)消煮液中铵的定量(凯氏法)
1、适用范围。适合于各种植物样品消煮液中氮的定量。
2、方法原理
植物样品经开氏消煮、定容后,吸取部分消煮液碱化,使铵盐转变成氨,经蒸馏,用H3BO3吸收,硼酸中吸收的氨可直接用标准酸滴定,以甲基红-溴甲酚绿混合指示剂指标终点。
3、试剂
(1)400g/L NaOH溶液。
(2)20g/L H3BO3-指示剂溶液。
(3)酸标准溶液[c(HCL或1/2H2SO4)=0.01mol/L]。
4、仪器设备。蒸馏装置或半自动蒸馏仪。
5、蒸馏
检查蒸馏装置是否漏气和管道是否洁净后,吸取定容后的消煮液5.00~10.00mL (V2,含NH4-N约1mg),注入半微量蒸馏器的内室。另取150ml三角瓶,内加5 ml 2% H3BO3指示剂溶液(若为包括硝态氮的待测液,应加约6 mL的400g/L NaOH溶液),通过蒸气蒸馏(注意开放冷凝水,勿使馏出液温度超过40℃)。待馏出液体积约达50~60ml时,停止蒸馏,用少量已调节至pH4.5的水冲洗冷凝管末端。用酸标准溶液滴定馏出液至由蓝绿色突变为紫红色(终点的颜色应和空白测定的滴定终点相同)。与此同时进行空白测定的蒸馏、滴定、以校正试剂和滴定误差。
6、结果计算
ω(N), %=c(V-V0)×0.014×D×100/m;
式中: ω(N)——植物全氮的质量分数,%;
c——酸标准溶液的浓度,mol/L;
V——滴定试样所用的酸标准液体积,ml;
V0——滴定空白所用的酸标准液, ml;
0.014——N的摩尔质量,kg/mol;
D——分取倍数(即消煮液定容体积V1/吸取测定的体积V2)。
二、植物全磷的测定
(一) 钒钼黄吸光光度法
1、适用范围。适合于含磷量较高的植物样品的测定(如籽粒样品)。
2、方法原理
植物样品经浓H2SO4消煮使各种形态的磷转变成磷酸盐。待测液中的正磷酸与偏钒酸和钼酸能生成*的三元杂多酸,其吸光度与磷浓度成正比,可在波长400~490nm处用吸光光度法测定。磷浓度较高时选用较长的波长,较低时选用较短波长。
此法的优点是操作简便,可在室温下显色,*稳定,在HNO3、HClO4和H2SO4等介质中都适用,对酸度和显色剂浓度的要求也不十分严格,干扰物少,在可见光范围内灵敏度较低,适测范围广(约为1~20mg/L P),故广泛应用于含磷较高而且变幅较大的植物和肥料样品中磷的测定。
3、试剂
(1)钒钼酸铵溶液:25.0g钼酸铵[(NH4)6Mo7O2·4H2O,分析纯]溶于400mL水中,必要时可适当加热,但温度不得超过60℃。另将1.25g偏钒酸铵(NH4VO3,分析纯)溶于300mL沸水中,冷却后加入250mL浓HNO3(分析纯)。将钼酸铵溶液缓缓注入钒酸铵(溶液中,不断搅匀,最后加水稀释至1L,贮于棕色瓶中。
(2)NaOH溶液(c=6mol/L):24gNaOH溶于水, 稀释至100ml。
(3)二硝基酚指示剂(ρ=2g/L):0.2g2,6-二硝基酚或2,4-二硝基酚溶于100ml水中。
(4)磷标准溶液ρ[(P)=50mg/L]:0.2195g(干燥的KH2PO4(分析纯)溶于水,加入5ml浓HNO3,于1L容器瓶中定容。
4、主要仪器设备。分光光度计。
5、分析步骤
准确吸取定容,过滤或澄清后的消煮液5~20ml(V2,含P0.05~0.75mg)放入50ml容量瓶中,加2滴二硝基酚指示剂,滴加6mol/LNaOH中和至刚呈*,加入10.00ml钒钼酸铵试剂,用水定容(V3)。15min后,用1cm光径的比色槽在波长440nm处进行测定,以空白溶液(空白溶液消煮液按上述步骤显色),调节仪器零点。
校准曲线或直线回归方程:准确吸取50mg/L P标准液0, 1, 2.5, 7.5, 10, 15ml分别放入50mL容量瓶中,按上述步骤显色,即得0, 1.0, 2.5 , 5.0, 7.5, 10, 15 ml P的标准系列溶液,与待测液一起进行测定,读取吸光度,然后绘制校准曲线或求直线回归方程。
6、结果计算
ρ(P)×V3×(V1/V2)×10-4
ω(P)=
m
式中: ω(P) ——植物磷的质量分数,%;
ρ(P) ——从校准曲线或回归方程求得的显色液中磷的质量浓度, mg/L;
V1——消煮液定容体积, ml;
V2——吸取测定的消煮液体积, ml;
V3——显色液体积, ml;
m——称样量,g;
10-4——将mg/L浓度单位换算为百分含量的换算因数。
7、注释
(1)显色液中ρ(P)=1~5 mg/L时,测定波长420nm;5~20mg/L用490nm。待测液中Fe3+浓度高应选用450nm,以清除Fe3+干扰。校准曲线也应用同样波长测定绘制。
(2)一般室温下,温度对显色影响不大,但室温太低(如<15℃)时,需显色30min。稳定时间可达24h。
(3)如试液为HCl,HClO4介质,显色剂应用HCl配制;试液为H2SO4介质, 显色剂也用H2SO4配制。显色液酸的适宜浓度范围为0.2~1.6 mol/L,最好是0.5~1.0 mol/L。酸度高显色慢且不完全,甚至不显色;低于0.2 mol/L易产生沉淀物, 干扰测定。钼酸盐在显色液中的终浓度适宜范围为1.6×10-3~10-2mol/L, 钒酸盐为8×10-5~2.2×10-3 mol/L。
4、此法干扰离子少。主要干扰离子是铁,当显色液中Fe3+浓度超过0.1%时,它的*有干扰,可用扣除空白消除。
(二)钼锑抗吸光光度法
1、适用范围
适合于含磷量较低的植物样品的测定(如茎秆样品等)。
2、方法提要
植物样品经浓H2SO4消煮使各种形态的磷转变成磷酸盐。在一定酸度下,待测液中的正磷酸与钼酸铵和酒石酸锑钾生成一种三元杂多酸,后者在室温下能迅速被抗坏血酸还原为蓝色络合物,可用吸光光度法测定。
3、试剂
(1)6mol/L NaOH溶液
(2)0.2%二硝基酚指示剂
(3)2mol/L(1/2 H2SO4)硫酸溶液:5.6mL浓H2SO4加水至100mL。
(4)钼锑贮存液: 浓H2SO4(分析纯)126 ml缓慢地注入约400 ml水中,搅拌,冷却。10.0g钼酸铵(分析纯)溶解于约60℃的300ml水中,冷却。然后将H2SO4溶液缓缓倒入钼酸铵溶液中,再加入100 ml0.5%酒石酸锑钾(KSbOC4O6·1/2H2O, 分析纯) 溶液,最后用水稀释至1L,避光贮存。此贮存液含钼酸铵为1%,酸浓度为c(1/2 H2SO4)=4.5 mol/L
(5)钼锑抗显色剂:1.50g抗坏血酸(C6H8O6,左旋,旋光度+21~+22, 分析纯) 溶于100ml钼锑贮存液中,此液须随配随用,有效期一天,冰箱中存放,可用3~5天。
(6)磷标准工作液[ρ(P)=5 mg/L]:吸取100mg/L P标准贮存液稀释20倍,即为5 mg/L P标准工作溶液,此溶液不宜久存。
4、主要仪器设备。同上
5、分析步骤
吸取定容过滤或澄清后的消煮液2.00~5.00ml(V2,含P5~30ug)于50ml容量瓶中, 用水稀释至约30ml,加1~2滴二硝基酚指示剂,滴加6mol/L NaOH溶液中和至刚呈*,再加入1滴2mol/L(1/2 H2SO4)溶液,使溶液的*刚刚褪去,然后加入钼锑抗显色剂5.00ml,摇匀,用水定容(V3)。在室温高于15℃的条件下放置30min后,用1cm光径比色槽在波长700nm处测定吸光度,以空白溶液为参比调节仪器零点。
校准曲线或直线回归方程: 准确吸取ρ(P)= 5mg/L标准工作溶液0, 1, 2, 4, 6, 8 ml,分别放入50mL容量瓶中,加水至30ml,同上步骤显色并定容, 即得0,按0.1, 0.2, 0.4, 0.6, 0.8 mg/L P标准系列溶液, 与待测液同时测定,读取吸光度,然后绘制校准曲线或直线回归方程。
6、结果计算:同1。
7、注释
根据分光光度计性能,可选用650~890nm波长处测定,880~890nm处灵敏度高
三、植物全钾的测定—火焰光度法
(一)适用范围。适合于植物样品消煮液中钾含量的测定。
(二)方法提要
植物样品经消煮或浸提,并经稀释后,待测液中的K可用火焰光度法测定。
(三)试剂
K标准溶液[ρ(K)= 100mg/L] :0.1907gKCl(分析纯),在105~110℃干燥2h)溶于水,于1L容量瓶中定容,存于塑料瓶中。
(四)主要仪器设备。火焰光度计。
(五)分析步骤
吸取定容后的消煮液5.00~10.00ml(V2)放入50mL容量瓶中,用水定容(V1),直接在火焰光度计上测定,读取检流计读数。
校准曲线或直线回归方程 准确吸取100mg/L K标准溶液0, 1, 2.5, 10, 20 ml, 分别放入50mL容量瓶中,加水定容的空白消煮液5或10ml(使标准溶液中的离子成分和待测液相近),加水定容。即得0, 2, 5, 10, 20, 40 mg/L K标准系列溶液。以浓度最高的标准溶液定火焰光度计检流计的满度(一般只定到90),然后从稀到浓依次进行测定,记录检流计读数,以检流计读数为纵坐标,钾浓度为横坐标绘制校准曲线或求直线回归方程。
(六)结果计算
ρ(K)×V3×(V1/V2)×10-4
ω(K)=
m
式中: ω(K) ——植物钾的质量分数,%;
ρ(K) ——从校准曲线或回归方程求得的测读液中K的浓度, mg/L;
V1——消煮液定容体积, ml;
V2——吸取体积, ml;
V3——测读液定容体积, ml;
m——干样质量,g;
10-4——将mg/L浓度单位换算为百分含量的换算因数。
热心网友
时间:2023-06-22 23:17
(1)全氮的测定。H2SO4-H2O2消煮液,可根据要求和条件选用蒸馏法、扩散法、靛酚蓝比色法或其他适当的方法测定全氮含量。
(2)全磷的测定。样品经H2SO4-H2O2消煮后的待测液中的磷可以选用在H2SO4介质中进行的各种钼蓝比色法或者钒钼黄比色法测定。钒钼黄法的灵敏度较低,但适用于含磷较高的植株样品。
(3)全钾的测定。树体组织中的全钾(和钠)以用2摩尔/升NH4OAC-0.1摩尔/升Mg(OAC)2浸提,直接用火焰光度计测定最为快速方便,测定结果也与用干灰化植物样品的方法相同。
扩展资料:
植物磷肥过量危害:
磷肥过量,会使作物从土壤中吸收过多的磷素,营养过多的磷素营养会促使作物呼吸作用过于旺盛,消耗的干物质大于积累的干物质,造成繁殖器官提前发育,引起作物过早成熟,籽粒小,产量低。
在缺锌土壤里过量施用磷肥后,会使土壤里的锌与过量的磷,产生磷酸锌沉淀,作物无法吸收,使作物出现明显缺锌症状。过量施磷肥还会造成土壤理化性质恶化。
热心网友
时间:2023-06-22 23:17
植物中的氮、磷、钾大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾等元素的定量。
采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有于扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。