奇妙的数学是什么
发布网友
发布时间:2022-05-03 01:57
我来回答
共1个回答
热心网友
时间:2022-06-29 07:41
数学是一门奇妙的学科,从最简单的算数到极难的椭圆曲线问题,我们从中都可以看到一些仿佛和我们直观印象不符,有些反直觉的知识,还有一些很有意思的数学趣闻,下面就举一些简单的例子让大家感受数学的奇妙。
首先是最常见的一个问题:0.999.......是否等于1,其实按照现在实数定义,这两个数是严格相等的,并不是0.9999...的极限等于1,严格的证明可以使用戴德金分割来证明,一般使用1/3之类的证明是不严谨的,因为无限小数严格来说不能做四则运算。
算术中的1+1=2并不是公理,根据皮亚诺公理它是严格可证的。
科赫曲线:面积有限,周长无限。
托里拆利小号:体积有限,表面积无限。
不动点定理:把一张世界地图揉成一团,随机地丢地上,地图上的一个地点的垂直投影必定和现实中这个地点在空间上相重合。
e是无理数,π是无理数,那么e+π,e-π,e*π,e/π是有理数还是无理数呢?看似如此简单的问题,人们不知道。
不可计算数:蔡廷常数,这听起来有点不可思议,蔡廷常数是一个确定的数字,但现已在理论上证明了,你是永远无法求出它来的。
五次方程没有根式解,是不是很令人沮丧与费解,但这就是事实。
上下山问题:爬同一座山,上山速度3m/s,下山速度5m/s,平均速度不是4m/s。也有点反常识,但简单计算一下就知道了。
调和级数是发散的!
皮筋与蚂蚁问题:一只蚂蚁在理性弹性绳的一端,向另一端以每秒1cm的速度爬行。弹性绳同时以每秒10cm的速度均匀地拉长,蚂蚁能否爬到终点?如果以每秒100cm的速度均匀拉长呢?
摆线长度:摆线长度等于圆直径四倍,这条与圆息息相关,怎么看怎么“无理”的一条线,长度不仅和π没有关系,还是个漂亮的整数倍!太不可理解了,一个圆滚出来的线居然与π无关。
正多边形有无穷多个,那么正多面体呢?有点意外,只有五种,其实这个不是很难证明,用欧拉定理就可以。
最大有意义的数:葛立恒数(当然现在不是啦,但他的构造是最让人能理解的,其它的Tree(3)之类构造就很难让人听懂),这个数的第一层就已经远远超出人类的想像,你甚至无法说出这个数的位数的位数的位数的位数(随便你写n多位数)。。。。。。(比如1234567890这个数的位数是10,而10的位数是2,2的位数是1)
关于维度:数学中的空间维度和物理中的维度定义是不尽相同的。数学中关于空间维度中的定义是过