已知{a n }是首项为a 1 ,公比q为正数的等比数列,其前n项和为S n ,且...
发布网友
发布时间:2024-02-08 22:48
我来回答
共1个回答
热心网友
时间:2024-07-24 20:08
由题意知
(1)∵q≠1,
∴S 2 = a 1 (1- q 2 ) 1-q ,S 4 = a 1 (1- q 4 ) 1-q ,
∴5(1-q 2 )=4(1-q 4 ).
∵q>0,
∴q= 1 2 .
(2)∵S n = a 1 (1- q n ) 1-q =2a 1 -2a 1 ( 1 2 ) n ,
∴b n =q+q n +S n =2a 1 + 1 2 +(1-2a 1 )( 1 2 ) n .
若{b n }是等比数列,则b 1 =a 1 +1,b 2 = 3 2 a 1 + 3 4 ,b 3 = 7 4 a 1 + 5 8 ,
由b 2 2 =b 1 b 2 ,解得8a 1 2 -2a 1 -1=0,所以a 1 =- 1 4 ,或a 1 = 1 2 .
①当a 1 = 1 2 时,b n = 3 2 ,
∴数列{b n }是等比数列.
②当a 1 =- 1 4 时,b n = 3 2 ( 1 2 ) n .
∵ b n+ b n = 3 2 ( 1 2 ) n+1 3 2 ( 1 2 ) n = 1 2 ,
∴数列{b n }是等比数列.