发布网友 发布时间:2022-05-03 08:51
共1个回答
热心网友 时间:2023-10-17 13:37
散列函数p的选择方法:
使用除留余数法的一个经验是,若散列表表长为m,通常p为小于或等于表长(最好接近m)的最小质数或不包含小于20质因子的合数。
举个例子:
某散列表的长度为100,散列函数H(k)=k%P,则P通常情况下最好选择哪个呢?A、91 B、93 C、97 D、99。
实践证明,当P取小于哈希表长的最大质数时,产生的哈希函数较好。我选97,因为它是离长度值最近的最大质数。
一般的线性表,树中,记录在结构中的相对位置是随机的,即和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和关键字的比较。
这一类查找方法建立在“比较“的基础上,查找的效率依赖于查找过程中所进行的比较次数。 理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。
哈希表的作用:
哈希表中元素是由哈希函数确定的。将数据元素的关键字K作为自变量,通过一定的函数关系(称为哈希函数),计算出的值,即为该元素的存储地址。
热心网友 时间:2023-10-17 13:37
散列函数p的选择方法:
使用除留余数法的一个经验是,若散列表表长为m,通常p为小于或等于表长(最好接近m)的最小质数或不包含小于20质因子的合数。
举个例子:
某散列表的长度为100,散列函数H(k)=k%P,则P通常情况下最好选择哪个呢?A、91 B、93 C、97 D、99。
实践证明,当P取小于哈希表长的最大质数时,产生的哈希函数较好。我选97,因为它是离长度值最近的最大质数。
一般的线性表,树中,记录在结构中的相对位置是随机的,即和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和关键字的比较。
这一类查找方法建立在“比较“的基础上,查找的效率依赖于查找过程中所进行的比较次数。 理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。
哈希表的作用:
哈希表中元素是由哈希函数确定的。将数据元素的关键字K作为自变量,通过一定的函数关系(称为哈希函数),计算出的值,即为该元素的存储地址。
热心网友 时间:2023-10-17 13:37
散列函数p的选择方法:
使用除留余数法的一个经验是,若散列表表长为m,通常p为小于或等于表长(最好接近m)的最小质数或不包含小于20质因子的合数。
举个例子:
某散列表的长度为100,散列函数H(k)=k%P,则P通常情况下最好选择哪个呢?A、91 B、93 C、97 D、99。
实践证明,当P取小于哈希表长的最大质数时,产生的哈希函数较好。我选97,因为它是离长度值最近的最大质数。
一般的线性表,树中,记录在结构中的相对位置是随机的,即和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和关键字的比较。
这一类查找方法建立在“比较“的基础上,查找的效率依赖于查找过程中所进行的比较次数。 理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。
哈希表的作用:
哈希表中元素是由哈希函数确定的。将数据元素的关键字K作为自变量,通过一定的函数关系(称为哈希函数),计算出的值,即为该元素的存储地址。