高中数学:一道考察单调性的函数题(填空题)
发布网友
发布时间:2024-04-19 08:20
我来回答
共3个回答
热心网友
时间:2024-04-23 19:24
1假,理由:f(X)=ksinX是周期函数(k为常数),但X是变量,f(X)=XsinX不是周期函数,不存在最小正周期。
2假,理由:f(X)=XsinX是关于Y轴对称的轴对称图形,不存在对称中心。
3真,理由:递增显而易见,递减:X是递增,sinx也是递增,但是X和sinx都是负值,Xsinx=绝对值Xsinx,X的绝对值单调递减,sinx的绝对值也单调递减,所以绝对值xsinx是单调递减,即xsinx是单调递减的
热心网友
时间:2024-04-23 19:28
1.假命题.
原因说明:最小正周期:f(x+最小正周期)=f(x).
f(x+2π) - f(x) = (x+2π)sin(x+2π) - xsinx = 2πsinx,
即f(x+2π) - f(x)不恒等于0,
所以该函数的最小正周期不是2π.
2.假命题.
原因说明:对称中心点(π,0):f(x-π) + f(x+π) = 0.
f(x-π) + f(x+π) = (x-π)sin(x-π) + (x+π)sin(x+π) = -2xsinx,
即f(x-π) + f(x+π)不恒等于0,
所以点(π,0)不是该函数的图像的一个对称中心.
3.真命题.
证明:
1)设x1,x2在(0,π/2)上,并且x1>x2.
由函数图像分析,在(0,π/2)上,sinx>x.
f(x1) - f(x2) = x1sin x1 - x2sin x2 > x1^2 - x2^2 > 0.
则f(x1) > f(x2),即在(0,π/2)上单调递增.
2)由总体假设x1,x2在(-π/2,0)上,并且x1>x2.
由函数图像分析,在(-π/2,0)上,sinx<x.
f(x2) - f(x1) = x2sin x2 - x1sin x1 < x2^2 - x1^2 < 0.
则f(x1) > f(x2),即在(-π/2,0)上也单调递增.
热心网友
时间:2024-04-23 19:26
该函数不是周期函数,也不是对称函数,命题3正确