求数列Xn== n+1/n-1 的极限
发布网友
发布时间:2024-03-07 12:12
我来回答
共2个回答
热心网友
时间:2024-03-12 06:21
lim
[(n-1)/(n+1)]^n
=lim
[(n+1-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^n
=lim
[1+(-2)/(n+1)]^(n+1-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
lim
[1+(-2)/(n+1)]^(-1)
=lim
[1+(-2)/(n+1)]^(n+1)
*
1
=lim
[1+(-2)/(n+1)]^[(n+1)/(-2)
*
(-2)]
=lim
{[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
={lim
[1+(-2)/(n+1)]^[(n+1)/(-2)]}^(-2)
根据重要的极限:lim
(1+1/n)^n=e
=e^(-2)
有不懂欢迎追问
热心网友
时间:2024-03-12 06:14
Xn=1+
2亥锭忿瓜莜盖冯睡辅精/(n-1)
N趋于无穷的时候2/(n-1)=0
Xn=1
解答完毕.