如何利用工业大数据推动制造业转型
发布网友
发布时间:2022-04-21 04:57
我来回答
共2个回答
热心网友
时间:2022-06-18 02:36
什么是工业大数据?
工业大数据,很难从内涵角度来作出一个定义,因为它涉及到很多各种各样的数据。但从外延角度来看,比较容易。
大体上是3+3,第一个“3”是指3个层面——企业,企业上面的供应链、产业链和生态链,以及在这上面的行业管理和宏观经济。第二个“3”是指每个企业都有的3个过程——生产,使用,以及发展中的经营效益,所以,“3+3”基本上把工业大数据的脉络圈起来了。
从企业的角度看,工业大数据是在一个企业的设计、创新、生产、经营和管理决策过程产生、使用和转型升级过程需要的信息之和。所以最小的圈是企业,一个企业从开始到生产线到设计、到工艺过程、到人,一直到管理、决策、市场、服务,像这样的环节都在使用。
从供应链、产业链和生态链的角度来看,工业大数据是供应链、产业链和生态链产生、使用和需求的各类信息之和。这三个链之间很难一刀断开,因此,我也是从一个概念来看。所以,制造业也好、工业企业也好,整个过程是一个链环周。这个链不仅是一个企业,更重要的是*机构、研究机构,需要把控和研究如何追求制造业前两环的优化。所以我们看到了超越一个企业的生存、使用和发展需求的新工业数据。
从行业管理和宏观*的角度来看,工业大数据是工业行业管理和宏观*产生、使用和需求的各类信息之和。每一个行业的管理都需要工业大数据,在工业行业又生存了很多企业,做好工业数据管理需要这样一个链条,所以“3+3”构成了工业大数据的外延,每一个环节,使用的和需求的中间是交集,这样才对工业大数据的发展提供了基础。
小结
首先,3+3加起来的组合就是工业大数据;
第二,产生、使用和进一步发展的需求的工业大数据是不同的,是交集;
第三,进一步发展需求的大数据最大;
最后一句话最重要,工业大数据,工业是主体。
为什么要发展工业大数据?
同样是三个层面,从三个由小到大的层面,加上一个需求,来看一下工业大数据的作用和意义。
首先,从最小的层面——企业来看,工业大数据为企业全过程设计、创新、生产、经营、管理、决策服务,为企业的发展战略和目标的实现服务。
第二个层面,工业大数据服务于供应链的优化、产业链的完善、生态链的形成和优化。从供应链、产业链、生态链来看,不管是CSM的生产圈,还是一个特定产品制造过程的供应链,或是一个完整生产过程的分析,工业大数据都是为了它的形成和优化。
第三个层面,工业大数据要满足行业和宏观决策*的实际需求,提高行业和宏观经济管理决策质量、能力。*的行业管理对于供应链、产业链、生态链、商业链、价值链有着非常重要的作用,但是*的宏观*超越了这样的链环本身,我们要对经济发展面临的重大问题作出回应,甚至回答制造业如何来应对这样的问题。所以从这个行业来看重要的是行业发展战略,而到宏观*的时候,不但要从行业的发展战略,还要从整个经济发展去看这些问题怎么解决?这就需要信息。
第四,从工业转型升级的需求看,工业大数据是为了一个个企业、行业、装备、工艺、生产线、供应链的转型升级服务。先进制造业、工业4.0、智能制造,以两化融合和智能制造为重点的中国制造2025,都是工业转型升级模式的未来方向。原来我们的3.0工业,是以装备和生产线为核心的自动化,而4.0的智能化是把这两个过程自动化和数据自动化结合在一起。
小结:
工业大数据的研究和实践要服务于加快制造业转型升级、提升工业竞争力;
这个目标要落实到企业创新、设计、生产、经营、管理、决策的每一个具体环节;
这个目标要落实到供应链全局优化、产业链和生态链的形成和优化的每一个具体环节;
这个目标要落实到工业行业管理和宏观经济*决策的每一个实际需求。
工业大数据怎么推动制造业转型升级?
在回答怎么办之前,首先要知道存在着哪些主要问题:
1、在数据生成环节,主要存在跑冒滴漏和非标准的问题;
2、在数据利用环节,主要存在数据不足、质量不高、各个环节协同存在制度、核算、标准等大量障碍;
3、在发展需求环节,主要存在缺乏预见性、缺乏有效的模型和工具、缺乏制度和标准规范等问题。
要想建设好、应用好大数据,首先要解决这三个问题:
首先是建设,什么是建设?我记得三年前说过,把大数据作探矿、采矿、炼矿、用矿,实际上探矿和采矿就是建设好信息,可以从三个纬度四个方面来建设好信息。三个纬度首先是发现,然后才可以按照应用需求结合起来。第二要有制度,要有标准,要实现系统之间的互操作。同时我们还要发现、收集、组织,来提升系统性、完整性、及时性、准确性。这是建设好、运用好。
利用好有三个方面或者三个层次和若干个关键环节。由于时间关系就不再展开讨论了。
最后,要特别注重取得实效、最佳实践和理论研究。
1、要特别注重实效。因为今天的大数据,每一个环节的形成都有它的实效,这件事情从开始到做完以后,效果究竟是什么?有很多企业家,当你用大数据对你企业各个环节进行改善提升的时候,你首先第一条要把提高效率放在首位,这是关键,而且对于制造业来说,要永远把利润率放在最重要的位置。当然,工业大数据不能直接用钱来算,有的环节是企业老板在管理上、服务上提效,但是这个效果必须是可测量的,不管是定性的还是定量的。
2、要特别注重最佳实践。i5数控机床,从开始研发到今天位列智能数控机床试点领先的行列,花了十年的时间。为什么前面几年没有成功?就是因为数据缺失。缺什么数据?高端数控机床为什么长期被国外控制?数控机床的技术为什么那么长时间没有克服?因为不管是材料的发展,还是装备的发展,都没有数据,没有实践过程中的数据,它是发展不起来的。接下来是模型怎么建,也需要数据来支撑,但是原来由于高端数控机床都由国外来控制,我们没有数据。另外,它在这个过程里面还倡导商业模式,这个机床是按服务钥匙收费。所以它又变成了今天最新最热门的制造行业分享。这显然是一个最佳实践,这里面工业数据是极其重要的。
3、要注重理论的研究,注重方法、制度创新的研究。在这个过程中,需要对制造业发展的趋势、特征,工业大数据的内涵外延,工业大数据建设和利用的系统方法,工业大数据质量保证、协同发展、制度创新等等一系列问题进行研究。
热心网友
时间:2022-06-18 02:37
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发