相遇问题解析
发布网友
发布时间:2022-04-21 05:39
我来回答
共3个回答
热心网友
时间:2022-05-23 02:46
相遇问题是行程问题中的一种典型问题,学生在四年级接触了简单行程问题的基础上(单一物体时间、路程、速度三者关系的研究),在五年级的下半学期进行相遇问题的集中学习。为了使教学更加有效教学设计中的新授环节我进行了如下尝试。
一、教学片断:
(一)动手实践,感知相遇问题中的要素:同时、相向(相对)、相遇
1、出示部分例题:甲车每小时行60千米,乙车每小时行80千米,两车从AB两地同时出发,相向而行,在丙地相遇
师:同学们,你们能用自己的橡皮来代表甲车和乙车,把题目中的题意表示出来吗?(同桌合作,一人代表甲车,一人代表乙车,两人的课桌代表了AB两地的路程,桌子的接缝代表了AB两地的中点)。
学生操作,教师观察
2、交流汇报,请学生上黑板演示
甲车
乙车
A地 B地
师:同学们怎么知道他们两个是同时出发的吗?
生:因为他们走之前说了“预备走”,我们看到他们是同时出发的。
师:那为什么是面对面的走?
生:题中有相向而行。
师:你能解释什么是相向而行吗?
师:题中说他们在丙地相遇了,你们能说一说丙地大概在什么位置,他们是在哪里相遇的吗?
学生甲说:在中间就相遇了。(很多同学的演示结果)
学生乙说:在靠近B地的地方相遇了。
师:出现不同方法思考他们谁说的更准确些?
生:甲车和乙车的速度不一样乙车的速度要快些,他们是同时出发,行了同样多的时间,所以他们相遇的时候离A地要近。
师:相遇时甲车和乙车分别行了多少路程,请用手在桌上比划一下。
师:请你们带着对刚才题意的理解在进行一次演示。
3、看线段图理解题意
(1)师出示线段图,你能从线段图上得到什么信息?
(2)出示完整例题:甲车每小时行60千米,乙车每小时行80千米,两车从AB两地同时出发,相向而行,AB两地全长280千米,经过几个小时两车在途中相遇?
(3)学生尝试寻找等量关系,列方程解应用题;
(4)交流:轿车行的路程+客车行的路程=两者相距的路程
解:设经过x小时两车在途中相遇。
60x+80x=280
140x=280
x=280÷140
x=2
答:经过2小时后两车在途中相遇。
二、我的反思:
(一)寓教与乐,感知重点
相遇问题的重点和难点是对于题中关键字眼的理解,如果单纯的从题目出发
对这些字眼进行讲解,我想教学的效果也不会很差,但是缺少了关键的一点,那就是体验。对于小学生来讲体验过的知识能加深理解与感悟,为后续学习带来极好的知识铺垫,所学的知识印象深刻,自然地知识的运用也会更灵活与正确。在教学教学相遇应用题时,我让同桌两名学生分别扮演甲车司机和乙车司机,在自己的课桌上演示相遇过程,充分调动了学生的学习积极性和主动性。学生在一次次愉悦的演示过程中,感受理解相遇应用题的规律和特征。
(二)合作学习,突破难点
在学习过程中我安排同桌小朋友一起演示相遇的过程,对很多学生来讲“合作是一种乐趣”。学生在进行合作演示相遇过程的时候,思维的火化不断地被点燃。在巡视过程中我发现同学们的争论是多么的有价值。“应该离我近点,我的速度比你快。”“ 不应该在正中间相遇的,他们的速度是不一样的,正中间相遇肯定是不对的。”“我还没有说开始呢,你自己怎么就先开走了” 。学们在体验该过程的时候引发的思考正是解决问题的关键,这比教师强加给他要生动许多、有趣许多,更真实而有效的过程为他们理解相遇问题中的重点和难点起到了很好的铺垫作用。正由于学生在自主学习中的合作学习,能够积极地推动学生学习的主动性和学习的兴趣,从而提高学习的效率。当然合作学习不仅仅只是为了学习,而且更重要的是要培养学生的一种合作意识,让他们意识到小组中的每一个人都是学习伙伴,都是合作者。
(三)以图为导,学会方法
我们都知道生活是具体的,数学是抽象的。我们应该把数学抽象的内容附着在现实的情境中,这样才能让学生去学习从现实生活中产生、发展的数学。因此当我们进行了演示后,我把重点放在了如何用线段图表示刚才的题意。我们知道线段图使题意更加形象直观,数量关系更清楚,是我们理解和简化行程问题的好办法。多用这样的方法去思考问题,对于提高我们的逻辑思维能力,大有好处。教学中我首先让同学们看根据例题所画的线段图,让同学们在没有文字提示的情况下看图理解题意,学生通过观察线段图,得到了许多的解题信息。在此基础上再出示例题让学生对比自己通过线段图所找的信息是否有误或者遗漏。这样做的目的是让学生知道,好的线段图能很好的反映出题意,帮助理解题意,所以我们在解决此类问题时也应该画线段图帮助自己理清思路。
热心网友
时间:2022-05-23 04:04
基本数量关系:路程和=速度和×相遇时间
解题思路:在已知条件中清楚地找到三者,或运用三者之一解题。注意用画图来理顺三者之间的关系
习题:1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?
解:AB距离=(4.5×5)/(5/11)=49.5千米
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4
那么相遇时的路程比=5:4
相遇时货车行全程的4/9
此时货车行了全程的1/4
距离相遇点还有4/9-1/4=7/36
那么全程=28/(7/36)=144千米
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3
相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?
解:甲走完1/4后余下1-1/4=3/4
那么余下的5/6是3/4×5/6=5/8
此时甲一共走了1/4+5/8=7/8
那么甲乙的路程比=7/8:7/10=5:4
所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5
那么AB距离=640/(1-1/5)=800米
5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?
解:一种情况:此时甲乙还没有相遇
乙车3小时行全程的3/7
甲3小时行75×3=225千米
AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米
一种情况:甲乙已经相遇
(225-15)/(1-3/7)=210/(4/7)=367.5千米
6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?
解:甲相当于比乙晚出发3+3+3=9分钟
将全部路程看作单位1
那么甲的速度=1/30
乙的速度=1/20
甲拿完东西出发时,乙已经走了1/20×9=9/20
那么甲乙合走的距离1-9/20=11/20
甲乙的速度和=1/20+1/30=1/12
那么再有(11/20)/(1/12)=6.6分钟相遇
7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?
解:路程差=36×2=72千米
速度差=48-36=12千米/小时
乙车需要72/12=6小时追上甲
8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?
解:
甲在相遇时实际走了36×1/2+1×2=20千米
乙走了36×1/2=18千米
那么甲比乙多走20-18=2千米
那么相遇时用的时间=2/0.5=4小时
所以甲的速度=20/4=5千米/小时
乙的速度=5-0.5=4.5千米/小时
9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?
解:速度和=60+40=100千米/小时
分两种情况,
没有相遇
那么需要时间=(400-100)/100=3小时
已经相遇
那么需要时间=(400+100)/100=5小时
10、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?
解:速度和=9+7=16千米/小时
那么经过(150-6)/16=144/16=9小时相距150千米
11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?
解:
速度和=42+58=100千米/小时
相遇时间=600/100=6小时
相遇时乙车行了58×6=148千米
或者
甲乙两车的速度比=42:58=21:29
所以相遇时乙车行了600×29/(21+29)=348千米
12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?
解:将两车看作一个整体
两车每小时行全程的1/6
4小时行1/6×4=2/3
那么全程=188/(1-2/3)=188×3=564千米
热心网友
时间:2022-05-23 05:39
t1=t2=t (v1+v2)t=s追问我问的是相遇问题的解析。就比如说简介还有习题解析..