问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

什么是"向量矩阵"?

发布网友 发布时间:2024-05-14 18:41

我来回答

3个回答

热心网友 时间:2024-06-17 08:01

没有这个概念~
向量
电子课文·向量

我们知道,位移是既有大小又有方向的量.事实上,现实世界中,这种量是很多的,如力、速度、加速度等.我们把既有大小又有方向的量叫做向量.

在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向

有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向和长度,它的终点就唯一确定.

向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.

向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.

向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.

方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a‖b‖c.我们规定0与任一向量平行.

长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.

向量的运算:
1、向量的加法:
AB+BC=AC

设a=(x,y) b=(x',y')
则a+b=(x+x',y+y')

向量的加法满足平行四边形法则和三角形法则。

向量加法的性质:
交换律:
a+b=b+a

结合律:
(a+b)+c=a+(b+c)

a+0=0+a=a

2、向量的减法
AB-AC=CB
a-b=(x-x',y-y')

矩阵
矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组。

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

来说,我们可以构成两个矩阵:

a1b1c1a1b1c1d1

a2b2c2a2b2c2d2

a3b3c3a3b3c3d3

因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。

矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。

但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状。随后移动处筹,就可以求出这个方程的解。在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年。

数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。

矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。

目录 [隐藏]
1 历史
2 定义和相关符号
2.1 一般环上构作的矩阵
2.2 分块矩阵
3 特殊矩阵类别
4 矩阵运算
5 线性变换,秩,转置
6 Jacobian 行列式
7 参见

[编辑]
历史
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德•威廉•莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔•克拉默其后又定下了克拉默法则。1800年代,高斯和威廉•若尔当建立了高斯—若尔当消去法。

1848年詹姆斯•约瑟夫•西尔维斯特首先创出matrix一词。研究过矩阵论的著名数学家有凯莱、威廉•卢云•哈密顿、格拉斯曼、弗罗贝尼乌斯和冯•诺伊曼。

[编辑]
定义和相关符号
以下是一个 4 × 3 矩阵:

某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。

在C语言中,亦以 A[j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的)

此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。

[编辑]
一般环上构作的矩阵
给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。

若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。

在维基百科内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。

[编辑]
分块矩阵
分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵

可分割成 4 个 2×2 的矩阵


此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。

[编辑]
特殊矩阵类别
对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。
埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。
特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。
随机矩阵所有列都是概率向量, 用于马尔可夫链。
[编辑]
矩阵运算
给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:

另类加法可见于矩阵加法.

若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如

这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.

若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如

此乘法有如下性质:

(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").
(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。
C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。

对其他特殊乘法,见矩阵乘法。

[编辑]
线性变换,秩,转置
矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:

以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。

矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。

m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:

(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

热心网友 时间:2024-06-17 08:03

矩阵与向量组
答:
同一本质的不同形式。
本质:可以互相等效。可以在任何畴上借用和代用对方的形式和方法来解题和思考问题。
A本质也是可以从多个方面讨论的。略
如相应的矩阵和向量组,秩相同,对称性相同,线性结构与线性性质相同。

同时,我们也可以因为不同形式的描述,得到同一本质的性质的不同形式,利于在不同思维下产生的结果的互相参照。
有些时候,两个完全同构和等效的领域,由于直观性与信息转换的代价,造成不均衡发展。于是,互相借鉴参照互补,最终趋于大同统一,二者均得以成熟。
有时,一个区域中开发出了新的天地,推广了,很多东西在高的观点下找到了完美的新形式,疑问得到进一步的深层解决;
而不知道的人,就不能借鉴和认识到大范围与子范围的关系,更无法应用到另一曾经的等效领域中去。
其实,最高的境界是自知且知人,自度也度人。这是人学,也是佛学,哲学,数学,万般学问都是如此。

B由于本质相同,所以形式上的区别,实际上就是讨论形式的对应构造与对立转化。
矩阵是m行n列的数表,可视为m个行向量的序列,即m元的有序行向量组;列类似(注:即将字符 (m,行)<-->(n,列)交换后的命题亦成立)。
[列]向量组是若干同维的列向量的序列,m元n维列向量的序列对应一个n*m矩阵。行类似。

热心网友 时间:2024-06-17 07:59

在线性代数中所说的向量已经完全抽象化了.翻开你的线性代数书,找到线性空间(又叫向量空间)的定义,看看全体实数矩阵的集合在加法和标量乘法下是否就是线性空间.答案是肯定的.因而其元素,在这里是矩阵,就被称为向量了.
从某个角度看,就是概念不断扩展和衍生的过程.当谈到数时,一个小学生首先想到的是1,2,3或者小数和分数,他不会想到复数,而你肯定想到的比他多.向量的概念也是类似的.在你脑袋里根深蒂固的向量的概念必须是那种几何向量,也就是箭头,现在你需要把它扩展了.
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
糖代谢增高会发展成糖尿病吗? 地毯怎么选购呢 酒店地毯定制 葡萄籽油可以炒菜吗 葡萄籽食用油炒菜好吃吗 ...道路的理论基础、时代背景、历史依据、现实依据 排骨怎么炖好吃又简单家常做法 家常炖排骨怎样做好吃 vivox9spius怎么设置指纹解锁屏幕呀求大神交 vivox9pius怎么解锁密码 手机,没了你会更好作文 镇江医保暂停服务期间可以办理医保转移手续吗 甘肃陇南市,宕昌县沙湾镇有药治疗早泄 如何理解党在新时代的历史革命? ...位置擦伤,然后过了一段时间好了之后脚上伤口位置变黑了怎么办... ...誓言,还和家人性命有关,后来可以说违背了,怎么办,纠结的要死!我想把... 我背叛了自己的誓言怎么办? 谁知道(二九特八七上四)是什么意思,是猜生肖,或许猜数字的 属羊的冬月二十一生日命运 ...风景原是这边好,广寒宫对水晶宫。猜数字,猜生肖 老人与海中出现的鱼 借了几家网贷后为什么申请被秒拒 红牛适合多大男性喝 丝网状回声是什么意思? 2020春分正当时,迈锐宝XL愿诸君莫负好时光 莫负春光好时节下一句 莫负春光好时节什么意思 亚才会开幕式作文,300字左右,急急急!!! 藻类植物可以保持水土涵养水源吗 在涵养水源、保持水土方面起重要作用,有“绿色水库”之称的生态系统是... 湖南工程学院湖南省二级计算机考试没过怎么办 通化道路运输从业资格证不年检可以吗? nba2kol操作技巧大全转身nba2kol转身怎么按 “06级”用英语怎么说 “2006级 汉语言文学系 本(二)班” 用英语应该怎么写? 请问上海永康路附近有推荐的咖啡厅吗? 奔驰s320用福斯机油行吗 经常锻炼但是没有肌肉能练会顺风旗,俄挺这些高难度动作吗? 练会并腿俄挺需要多久? 我妈妈得了宫颈癌,在省肿瘤医院已经花了23w左右,扣除自费外还有14w左右... 办退休手续需要单位盖章,盖章应该收钱吗 雷神星驰与静悦轮胎哪个好 躺着看电视或早上起床时头晕,视线模糊,请问这跟脑瘤有关系吗 正定河北省园博园怎么样? 股骨头坏死北京那一家医院保守治疗效果最佳不坑人求明路 原位癌和恶性肿瘤有什么区别?为什么有的重疾险不赔原位癌? ...A.用铁锅烧糖醋排骨 B.用福尔马林浸泡水产品以达保鲜 C.用石灰... 苹果x手机电量为什么显示不了百分比了 写话叮零零下课了,,,叮零零上课了。 ...倒出同样多水后,大桶水是小的3倍,大小桶原各装水多少? 尿素生产日期怎么看 用等电聚焦电泳分离某一蛋白质样品,得到的蛋白质条带数能否代表蛋白质种...