发布网友 发布时间:2024-05-28 19:26
共1个回答
热心网友 时间:2024-06-12 06:00
tan(-x)=-tanx,因此正切函数是奇函数,因而原点(0,0)是它的对称中心。又因为正切函数的周期是π,所以点(kπ,0)都是它的对称中心。
正切函数的对称中心解析:
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(a+x)+f(a-x)=2c,那么,函数f(x)的图象关于点(a, c)对称(图2.4-3),反之亦然。正切函数满足f(kπ+x)+f(kπ-x)=0,所以对称中心(kπ,0),k∈Z。
正切函数的对称中心有图像与 x 轴的交点,还有使函数无定义的点,因此 y = tanx 的对称中心是(kπ/2,0),k 为整数。相应地,y = tan2x 的对称中心是(kπ/4,0),k 为整数。实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π (n∈Z) 都是它的对称中心。
复数三角函数:
sin(a+bi)=sinacosbi+sinbicosa
=sinachb+ishbcosa
cos(a-bi)=cosacosbi+sinbisina
=cosachb+ishbsina
tan(a+bi)=sin(a+bi)/cos(a+bi)
cot(a+bi)=cos(a+bi)/sin(a+bi)
sec(a+bi)=1/cos(a+bi)
csc(a+bi)=1/sin(a+bi)