南通中考数学
发布网友
发布时间:2022-04-14 12:28
我来回答
共5个回答
热心网友
时间:2022-04-14 13:57
2011年江苏省南通市中考数学试题
一、选择题(本大题共10小题,每小题3分,满分30分)
1.如果60m表示“向北走60m”,那么“向南走40m”可以表示为【 】
A.-20m B.-40m C.20m D.40m
【答案】B.
【考点】相反数。
【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。故根据相反数的定义,可直接得出结果
2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】
【答案】C.
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形和中心对称图形的定义,可知A是中心对称图形而不是轴对称图形;B也是中心对称图形而不是轴对称图形;C既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D既不是轴对称图形也不是中心对称图形。
3.计算的结果是【 】
A.±3 B.3 C.±3 D.3
【答案】D.
【考点】立方根。
【分析】根据立方根的定义,因为33=27,所以。
4.下列长度的三条线段,不能组成三角形的是【 】
A.3,8,4 B.4,9,6
C.15,20,8 D.9,15,8
【答案】A.
【考点】三角形的构成条件。
【分析】根据三角形任两边之和大于第三边的构成条件,A中3+4<8,故A的三条线段不能组成三角形。
5.如图,AB∥CD,∠DCE=80°,则∠BEF=【 】
A.120° B.110° C.100° D.80°
【答案】C.
【考点】平行线的性质。
【分析】根据同旁内角互补的平行线性质,由于AB∥CD,∠DCE和∠BEF是同旁内角,从而∠BEF=。
6.下列水平放置的几何体中,俯视图是矩形的为【 】
【答案】B.
【考点】几何体的三视图。
【分析】根据几何体的俯视图视图规则,A和D的俯视图是圆,B的俯视图是矩形,C的
俯视图是三角形。
7.若3是关于方程x2-5x+c=的一个根,则这个方程的另一个根是【 】
A.-2 B.2 C.-5 D.5
【答案】B.
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数与二次项系数商的相反数,所以有。
8.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于【 】
A.8 B.4 C.10 D.5
【答案】5.
【考点】圆的直径垂直平分弦,勾股定理。
【分析】根据圆的直径垂直平分弦的定理,∆OAM是直角三角形,在Rt∆OAM中运用勾股定理有,。
9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出发1h D.甲比乙晚到B地3h
【答案】A.
【考点】一次函数。
【分析】根据所给的一次函数图象有:A.甲的速度是;B. 乙的速度是;C.乙比甲晚出发; D.甲比乙晚到B地。
10.设m>n>0,m2+n2=4mn,则=【 】
A.2 B. C. D.3
【答案】A.
【考点】代数式变换,完全平方公式,平方差公式,根式计算。
【分析】由m2+n2=4mn有,因为m>n>0,所以,则。
二、填空题(本大题共8小题,每小题3分,满分24分)
11.已知=20°,则的余角等于 .
【答案】700.
【考点】余角。
【分析】根据余角的定义,直接得出结果:900-200=700。
12.计算:-= .
【答案】。
【考点】根式计算。
【分析】利用根式计算法则,直接导出结果:。
13.函数y=中,自变量x的取值范围是 .
【答案】。
【考点】分式定义。
【分析】根据分式定义,分母不能为0,从而得出结论。
14.七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体
重的中位数为 kg.
【答案】40。
【考点】中位数。
【分析】根据的中位数定义,中位数是指将数据按大小顺序排列起来,形成一个数列,居
于数列中间位置的那个数据。故应先将七位女生的体重重新排列:35,36,38,40,42,42,
45,从而得到中位数为40。
15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE
=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC
= cm.
【答案】4。
【考点】矩形性质,折叠,等腰三角形性质,直角三角形性质,300角直角三角形的性质。
【分析】由矩形性质知,∠B=900,又由折叠知∠BAC=∠EAC。根据等腰三角形等边对等
角的性质,由AE=CE得∠EAC=∠ECA。而根据直角三角形两锐角互余的性质,可以得到
∠ECA=300。因此根据300角直角三角形中,300角所对直角边是斜边一半的性质有,Rt∆ABC
中AC=2AB=4。
16.分解因式:3m(2x―y)2―3mn2= .
【答案】。
【考点】提取公因式法和应用公式法因式分解。
【分析】。
17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,
∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
【答案】A.
【考点】解直角三角形,特殊角三角函数,根式计算。
【分析】在Rt∆ABD和Rt∆ABC中
如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=x相切.设三个半圆的半
径依次为r1、r2、r3,则当r1=1时,r3= .
【答案】9。
【考点】一次函数,直角三角形的性质,相似三角形。【分析】设直线y=x与三个半圆分别切于A,
B,C,作AEX轴于E,则在Rt∆AEO1中,易得∠AOE=∠EAO1=300,由r1=1得EO=,
AE=,OE=,OO1=2。则。同理,。
三、解答题(本大题共10小题,满分96分)
19.(10分)(1)计算:22+(-1)4+(-2)0-|-3|;
(2)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.
【答案】解:(1)原式=4+1+1-3=1。
(2)原式=4ab(b2-2ab)÷4ab+4a2-b2=b2-2ab+4a2-b2=4a2-2ab
当a=2,b=1时,原式=4×22-2×2×1=16-4=12。
【考点】负数的偶次幂,0次幂,绝对值,代数式化简,平方差公式。
【分析】(1)利用负数的偶次幂,0次幂和绝对值的定义,直接得出结果。
(2)利用提取公因式先把分式化简,应用平方差公式把多项式乘多项式化简,然后合并同类项,再代入。[来源:学科网]
20.(8分)求不等式组 的解集,并写出它的整数解.
【答案】解:由①,得x1, 由②,得x<4。
所以不等式组的解集为。它的整数解1,2,3。
【考点】-元一次不等式组。
【分析】利用-元一次不等式组求解方法,直接得出结果,然后写出它的整数解。
21.(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.
【答案】解:(1)300,36。
(2)喜欢足球的有300-120-60-30=90人,所以据此将条形图补充完整(如右图)。
(3)在参加调查的学生中,喜欢篮球的有120人,占
120300=40%,所以该校2000名学生中,估计喜欢“篮球”的学生共有2000×40%=800(人)。
【考点】扇形统计图,条形统计图,频率,频数。
【分析】(1)从图中知,喜欢乒乓球的有60人,占20%,所以参加调查的学生共有6020%=300(人)
喜欢其他球类的有30人,占30300=10%,所以表示“其他球类”的扇形的圆心角为3600×10%=360。
(2)由(1)参加调查学生的总数减去另外各项就可得喜欢足球的人数,将条形图补充完整。
(3)先求出在参加调查的学生中,喜欢篮球的人,占参加调查的学生的百分比就能估计出全校喜欢“篮球”的学生人数。
22.(8分)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O
于点C,OC平分∠AOB.求∠B的度数.
【答案】解:∵OC平分∠AOB,∴∠AOC=∠COB,
∵AM切⊙O于点A,即OA⊥AM,又BD⊥AM,
∴OA∥BD,∴∠AOC=∠OCB
又∵OC=OB,∴∠OCB=∠B,∴∠B=∠OCB=∠COB=600。
【考点】圆的切线,角平分线,直线平行,三角形的内角和。
【分析】要求∠B,由于OC=OB,根据等边对等角可知∠OCB=∠B。由于OA,BD都垂直于同一条直线AM,从而OA∥BD,根据两直线平行内错角相等,有∠AOC=∠OCB。而
OC平分∠AOB,通过等量代换可得∠B=∠OCB=∠COB,因此由三角形的内角和1800可得∠B==600。
23.(8分)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?
【答案】解:设父亲每分钟跳x个,儿子每分钟跳x+20个。
依题意有。解之,得x=120。
经检验,x=120是方程的根。
当x=120时,x+20=140。
答:父亲每分钟跳120个,儿子每分钟跳140个。
【考点】列方程解应用题,分式方程。
【分析】列方程解应用题的关键是找出等量关系:相同时间内父亲跳180个,儿子跳210个。即父亲跳180个的时间=儿子跳210个的时间,而时间=运动量运动速度。
24.(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:
它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和不同点:
相同点:
① ;
② .
不同点:
① ;
② .
【答案】解:相同点:①正五边形的和正六边形都是轴对称图形。
②正五边形的和正六边形内角都相等。
不同点:①正五边形的对角线都相等;正六边形对角线不全等。
②正五边形的对角线不交于同一点;正六边形对角线过中心的三条交于同一点。
【考点】正五边形的和正六边形。
【分析】相同点:①正五边形有五条对称轴,分别是顶点和其对边中点连线所在直线;正六边形六条对称轴,分别是对角顶点连线所在直线和对边中点连线所在直线。
②正五边形每个内角都是1080;正六边形每个内角都是1200。
不同点:①正五边形的对角线与两条邻边构成的三角形
都是是全等的;正六边形对角线中过中心的三条一样长(图中红
线),不过中心的六条一样长(图中蓝线)。
②图中可见。
25.(9分)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
【答案】解:(1)列出甲、乙、丙三名学生各自随机选择其中的一处检测视力的所有情况:
三人都不选A处,则三人都选B处,计1种情况。
三人中一人选A处,另二人选B处,计3种情况;甲选A处,乙、丙选B处;乙选A处,甲、丙选B处;丙选A处,甲、乙选B处。
三人中二人选A处,另一人选B处,计3种情况;甲、乙选A处,丙选B处;甲、丙选A处,乙选B处;乙、丙选A处,甲选B处。
三人都选A处,则三人都不选B处,计1种情况。
所有可能情况计8种情况,甲、乙、丙三名学生在同一处检测视力的情况计2种情况:都选A处或都选B处。因此甲、乙、丙三名学生在同一处检测视力的概率为
。
(2)甲、乙、丙三名学生中至少有两人在B处检测视力的情况计4种情况:三人中有二人选B处和三人都选B处。因此甲、乙、丙三名学生中至少有两人在B处检测视力的概率为。
【考点】概率。
【分析】列举出所有情况,分析出符合条件的情况,求出概率。
26.(10分)如图1,O为正方形ABCD的中心,
分别延长OA、OD到点F、E,使OF=2OA,
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.
【答案】解:(1)AE1=BF1,证明如下:
∵O为正方形ABCD的中心,∴OA=OB=OD,∴OE=OF
∵△E1OF1是△EOF绕点O逆时针旋转角得到,∴OE1=OF1。
∵ ∠AOB=∠EOF=900, ∴ ∠E1OA=900-∠F1OA=∠F1OB
OE1=OF1
在△E1OA和△F1OB中, ∠E1OA=∠F1OB,∴△E1OA≌△F1OB (SAS)
OA=OB
∴ AE1=BF1。
(2)取OE1中点G,连接AG。
∵∠AOD=900,=30° , ∴ ∠E1OA=900-=60°。
∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°。
∴ AG=GE1,∴∠GAE1=∠GE1A=30°。∴ ∠E1AO=90°。
∴△AOE1为直角三角形。
【考点】正方形的性质和判定,旋转,全等三角形的判定和性质,直角三角形的判定。
【分析】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边。考察△E1OA和△F1OB,由正方形对角线互相平分的性质有OA=OB;再看OE1和OF1,它们是OE和OF经过旋转得到,由已知易得相等;最后看夹角∠E1OA和∠GE1A,由于它们都与∠F1OA互余。从而得证。
(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°。考虑到OE1=2OA,作辅助线AG,得∠AGO=∠OAG,由于∠E1OA与互余,得到∠E1OA=60°,从而得到△AOG的三个角都相等,都等于600。又由AG=GE1得到∠GAE1=∠GE1A=30°。因此 ∠E1AO=90°,从而得证。
27.(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值.
【答案】解:(1)证明:用反证法。假设C(-1,2)和E(4,2)都在抛物线y=a(x-1)2+k
(a>0)上,联立方程 ,
解之得a=0,k=2。这与要求的a>0不符。
∴C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上。
(2)点A不在抛物线y=a(x-1)2+k(a>0)上。这是因为如果点A在抛物线上,则k=0。B(0,-1)在抛物线上,得到a=-1,D(2,-1)在抛物线上,得到a=-1,这与已知a>0不符;而由(1)知,C、E两点不可能同时在抛物线上。
因此点A不在抛物线y=a(x-1)2+k(a>0)上。
(3)综合(1)(2),分两种情况讨论:
①抛物线y=a(x-1)2+k(a>0)经过B(0,-1)、C(-1,2)、D(2,-1)三个点,
a(0-1)2+k=-1
联立方程 a(-1-1)2+k=2,
a(2-1)2+k=-1
解之得a=1,k=-2。
②抛物线y=a(x-1)2+k(a>0)经过B(0,-1)、D(2,-1)、E(4,2)三个点,
a(0-1)2+k=-1
联立方程 a(2-1)2+k=-1,
a(4-1)2+k=2
解之得a=,k=。
因此,抛物线经过B、C、D三个点时,a=1,k=-2。抛物线经过B、D、E三个点时,
a=,k=。
【考点】二次函数,二元一次方程组。
【分析】(1)用反证法证明只要先假设结论成立,得到与已知相矛盾的结论即可。
(2)要证点A不在抛物线上,只要证点A和其他任意两点不在同一抛物线上即可。
(3)分别列出任意三点在抛物线上的所有情况,由(2)去掉点A,还有B、C、D、E四个点,可能情况有 ①B、C、D, ②B、C、E, ③B、D、E和④C、D、E。而由(1)去掉②B、C、E和④C、D、E两种C、E两点同时在抛物线上的情况。这样只剩下①B、C、D
和③B、D、E两种情况,分别联立方程求解即可。
28.如图,已知直线l经过点A(1,0),与双曲线y=
(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平
行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N.
(1)求m的值和直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;?源自:中国<学考<频道?
(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若
不存在,请说明理由.
【答案】解:(1)由点B(2,1)在y=上,有2=,即m=2。
设直线l的解析式为,由点A(1,0),点B(2,1)在上,得
, ,解之,得
∴所求 直线l的解析式为 。
(2)点P(p,p-1)在直线y=2上,∴P在直线l上,是直线y=2和l的交点,见图(1)。
∴根据条件得各点坐标为N(-1,2),M(1,2),P(3,2)。
∴NP=3-(-1)=4,MP=3-1=2,AP=,
BP=
∴在△PMB和△PNA中,∠MPB=∠NPA,。
∴△PMB∽△PNA。
(3)S△AMN=。下面分情况讨论:
当1<p<3时,延长MP交X轴于Q,见图(2)。设直线MP为则有
解得
则直线MP为
当y=0时,x=,即点Q的坐标为(,0)。
则,
由2=4有,解之,p=3(不合,舍去),p=。
当p=3时,见图(1)S△AMP==S△AMN。不合题意。
当p>3时,延长PM交X轴于Q,见图(3)。
此时,S△AMP大于情况当p=3时的三角形面积S△AMN。故不存在实数p,使得S△AMN=4S△AMP。
综上,当p=时,S△AMN=4S△AMP。
【考点】反比例函数,一次函数,待定系数法,二元一次方程组,勾股定理,相似三角形一元二次方程。
【分析】(1)用点B(2,1)的坐标代入y=即可得m值,用待定系数法,求解二元一次方程组可得直线l的解析式。
(2)点P(p,p-1)在直线y=2上,实际上表示了点是直线y=2和l的交点,这样要求证△PMB∽△PNA只要证出对应线段成比例即可。
(3)首先要考虑点P的位置。实际上,当p=3时,易求出这时S△AMP=S△AMN,当p>3时,注意到这时S△AMP大于p=3时的三角形面积,从而大于S△AMN,。所以只要主要研究当1<p<3时的情况。作出必要的辅助线后,先求直线MP的方程,再求出各点坐标(用p表示),然后求出面积表达式,代入S△AMN=4S△AMP后求出p值。
热心网友
时间:2022-04-14 15:15
2011年南通中考数学试卷
一.选择题(本大题共10小题,每小题3分,共30分)
1.如果60m表示“向北走60m”,那么“向南走40m”可以表示为()
A.-20m B.-40mC.20mD.40m
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B.C.D.
3.计算327 的结果是()
A.±33 B.33 C.±3D.3
4.下列长度的三条线段,不能组成三角形的是()
A.3,8,4 B.4,9,6C.15,20,8D.9,15,8
5.已知:如图,AB ∥ CD,∠DCE=80 ° ,则∠BEF的度数为()
A.120 ° B.110 °
C.100 ° D.80 °
6.下列水平旋转的几何体中,俯视图是矩形的是( )
7.已知3是关于x的方程x2-5x+c=0的一个根,则这个方程的另一个根是(*)
A.-2 B.2C.-5D.6
8.如图,⊙ O的弦AB=8,M是AB的中点,且OM=3,则⊙ O的半径等于(*)
A.8 B.4C.10D.5
9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20千米.他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示,根据图像信息,下列说法正确的是(*)
A.甲的速度 4千米/小时
B.乙的速度 10千米/小时
C.乙比甲晚出发1小时
D.甲比乙晚到B地3小时
10.设m > n > 0, m2+n2=4mn,则m2-n2mn 的值等于(*)
A.23 B.3 C.6 D.3
二.填空题(本大题共8小题,每小题3分,共24分)
11.已知∠α ° ,则∠α的余角等于 度.
12.计算:8 -2 = .
13.函数y=x+2x-1 中,自变量x的取值范围是 .
14.七位女生的体重(单位:Kg)分别是36、42、38、42、35、45、40,则这七位女生的体重的中位数为 Kg.
15.如图,矩形纸片A BCD,AB=2cm,点E在BC上,且AE=EC,若将纸片折叠,点B恰好与AC上的点B′重合,则AC= cm.
16.分解因式:3m(2x-y)2-3mn2= .
17.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ ACB=30 ° ,点D测得∠ ADB=60 ° ,又CD=60m,则河宽AB为 m(结果保留根号).
18.已知:如图,三个半圆依次相外切,它们的圆心都在x轴的正半轴上,并与直线y=33 x相切,设半圆C1、半圆C2、半圆C3的半径分别是r1、r2、r3,则当r1=1时,r3=
三.解答题(本大题共10小题,共96分)
19.(本小题满分10分)
(1)计算:22+(-1)4+(5 -2)0-︱-3︱
(2)先化简,再求值:
(4ab3-8a2b2)÷ 4ab+(2a+b)(2a-b),其中a=2,b=1.
20.(本小题满分8分)
求不等式组3x-6≥x-42x+1>3(x-1) 的解集,并写出它的整数解.
21.(本小题满分9分)
某中学学生会为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类)并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有 人;在扇形图中,表示“其他球类”的扇形的圆心角为 度
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.
22.(本小题满分8分)
如图,AM为⊙ O的切线,A为切点,BD ⊥ AM于点D,BD交⊙ O于点C,OC平分∠ AOB.求∠ B的度数.
23.(本小题满分8分)
列方程解应用题:
在社区全民健身活动中,父子俩参加跳绳比赛,相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?
24.(本小题满分8分)
比较正五边形与正六边形,可以发现它们的相同点与不同点.
例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和两个不同点.
相同点:(1) (2)
不同点:(1) (2)
25.(本小题满分9分)
光明中学十分重视中学生的用眼卫生,并定期进行视力检测,某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
26.(本小题满分10分)
已知:如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连接EF,将△ FOE绕点O逆时针旋转α角得到△ F′OE ′(如图2).
(1)探究AE ′与BF ′的数量关系,并给予证明;
(2)当α=30 ° 时,求证:△AOE′为直角三角形.
27.(本小题满分12分)
已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a(x-1)2+k(a > 0),经过其中三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a > 0)上.
(2)点A 抛物线y=a(x-1)2+k(a > 0)上吗?为什么?
(3)求a与k的值.
28.(本小题满分14分)
如图,直线l经过点A(1,0),且与曲线y=mx (x > 0)交于点B(2,1),过点P(p,p-1)(p > 1)作x轴的平行线分别交曲线y=mx (x > 0)和y=-mx (x < 0)于M、N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB ∽ △PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
2011年南通中考数学试题参*
1-10:B.C.D.A.C.B.B.D.C.A.
11.70
12.2
13.x≠1
14. 40
15.4
16.3m(2x-y+n)(2x-y-n)
17.303
18.9.
19.(1)3 (2)4a²-2ab, 12.
20.1≤x<4, 整数解为:1、2、3
21.(1)300 36 (2)略 (3)800
22.60度
23.父亲每分钟跳120个,儿子每分钟跳140个
24.正五边形的各内角相等,正六边形各内角相等;
正五边形是轴对称图形,正六边形也是轴对称图形.
正五边形不能密铺,正六边形可以密铺;
正五边形的各边不平行,正六边形的对边平行.
25.1/4, 1/2
26.(1)用边角边证明△AOE’和△BOF’全等,即可证得AE’=BF’
(2)取OE’的中点G,得到等边△AOG,等到∠AGO=60°,又由AG=E’G得到∠AE’O=30°,从而得到∠OAE’是90°,即为直角三角形。
27.解:
(1)假设C、E同时在抛物线y=a(x-1)2+k(a > 0)上,则有:
a(-1-1)2+k=2a(4-1)2+k=2 ,化简后即:4a+k=29a+k=2 ,解得a=0k=2 ,很显然,当a=0时,y=a(x-1)2+k即y=2就不再是抛物线了,而是一条直线.所以C、E不可能同时在抛物线y=a(x-1)2+k(a > 0)上.
(2)假设点A在抛物线y=a(x-1)2+k(a > 0)上,可以求得k=0.因为此抛物线还得同时经过B、C、D、E四个点中其中两个,分别把B、C、D、E四个点的坐标代入此抛物线的解析式分别求得a的值分别为:
B:a=-1;C:a=12 ;D:a=-1;E:a=29 其他两个在抛物线上的点求出来的a的值应该相同,所以只有B、D在抛物线上,但是题目要求a > 0,因此,点A不可能在此抛物线上.
(3)由(1)(2)可知,可能有两种情况:①此抛物线经过点B、点C、点D②此抛物线经过点B、点D、点E.
①假如此抛物线经过点B、点C、点D成立,将此三点坐标代入此抛物线的解析式可得:
-1=a(0-1)2+k2=a(-1-1)2+k-1=a(2-1)2+k
解得:a=1k=-2
①假如此抛物线经过点B、点D、点E成立,将此三点坐标代入此抛物线的解析式可得:
-1=a(0-1)2+k-1=a(2-1)2+k2=a(4-1)2+k
解得:a=38k=-118
以上两组答案都符合题意.
28.解:
(1)因为点B(2,1)在此曲线y=mx (x > 0)上,将点B(2,1)代入y=mx 求得m=2.
设直线l的解析式为y=kx+b,因为直线l过A(1,0)和B(2,1),将这两个点的坐标代入直线l的解析式y=kx+b,得到:
k+b=02k+b=1 ,由此解得:k=1b=-1 ,
所以直线l的解析式为:y=x-1.
(2)点P在y=2上,即p-1=2,p=3, 所以点p的坐标为(3,2).
因此点P在直线l:y=x-1上,即点P是直线y=2与直线y=x-1的交点.
由y=2与y=2x , y=-2x 易求出M(1,2),N(-1,2),
所以PM=2,PB=2 ,PN=4,PA=22 ,
PMPB =22 =2 ,PNPA =422 =2
即PMPB =PNPA
在△PMB和△PNA中,
PMPB=PNPA∠MPB=∠NPA(公共角)
所以△PMB ∽ △PNA.
(3)假设存在满足条件的实数p,也就是存在满足条件的点P(p,p-1).由M(1,2),N(-1,2),A(1,0)易求出:
S△AMN=12 × 2 × 2=2.
由图可知,S△APM=12 •AM•(p-1)=12 × 2×(p-1)= p-1,
因此,由S△AMN=4 S△APM可得:2=4(p-1),
解得:p=32 > 1,符合题意.
所以存在实数p,使得S△AMN=4 S△APM.
热心网友
时间:2022-04-14 16:50
南京市2011年初中毕业生学业考试
数 学
数学注意事项:
1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)
1. 的值等于
A.3B.-3C.±3D.
2.下列运算正确的是
A.a2+a3=a5B.a2•a3=a6C.a3÷a2=aD.(a2)3=a8
3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为
A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106人
4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是
A.随机抽取该校一个班级的学生
B.随机抽取该校一个年级的学生
C.随机抽取该校一部分男生
D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生
5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是
6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为 ,则a的值是
A. B. C. D.
二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)
7.-2的相反数是________.
8.如图,过正五边形ABCDE的顶点A作直线l∥CD,则∠1=____________.
9.计算 =_______________.
10.等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝.
11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于___________.
12.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为_________㎝2.
13.如图,海边有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P与A、B的张角∠APB的最大值为______°.
14.如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF,将△ABE绕正方形的中心按逆时针方向转到△BCF,旋转角为a(0°<a<180°),则∠a=______.
15.设函数 与 的图象的交战坐标为(a,b),则 的值为__________.
16.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:
①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;
②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.
三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)解不等式组 ,并写出不等式组的整数解.
18.(6分)计算
19.(6分)解方程x2-4x+1=0
20.(7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.
⑴求训练后第一组平均成绩比训练前增长的百分数;
⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;
⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.
21.(7分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
⑴求证:△ABF≌△ECF
⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
22.(7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
23.(7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:
⑴抽取1名,恰好是女生;
⑵抽取2名,恰好是1名男生和1名女生.
24.(7分)已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.
25.(7分)如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
26.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
27.(9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
28.(11分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为 .
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数 的图象性质.
①填写下表,画出函数的图象:
②
x……
1234……
y…………
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数 (x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
答案:
一.选择题:ACCDBB
二.填空:
7. 2 8. 36 9. 10. 6 11. 12. 13. 40 14. 90 15. 16. 4
17. 解:
解不等式①得:
解不等式②得:
所以,不等式组的解集是 .
不等式组的整数解是 ,0,1.
18.
19. 解法一:移项,得 .
配方,得 ,
由此可得
,
解法二:
,
, .
20.解:⑴训练后第一组平均成绩比训练前增长的百分数是 ≈67%.
⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).
(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.
21.证明:⑴∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.
∵EC=DC, ∴AB=EC.
在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴⊿ABF≌⊿ECF.
(2)解法一:∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形.∴AF=EF, BF=CF.
∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.
∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.
∴FA=FE=FB=FC, ∴AE=BC.∴口ABEC是矩形.
解法二:∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形.
∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.
又∵∠AFC=2∠D,∴∠AFC=2∠BCE,
∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.∴AE=AD.
又∵CE=DC,∴AC⊥DE.即∠ACE=90°.∴口ABEC是矩形.
22. 解⑴3600,20.
⑵①当 时,设y与x的函数关系式为 .
根据题意,当 时, ;当 , .
所以, 与 的函数关系式为 .
②缆车到山顶的路线长为3600÷2=1800( ),
缆车到达终点所需时间为1800÷180=10( ).
小颖到达缆车终点时,小亮行走的时间为10+50=60( ).
把 代入 ,得y=55×60—800=2500.
所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100( ).
23. 解⑴抽取1名,恰好是女生的概率是 .
⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A)的结果共6种,所以P(A)= .
24.解:⑴当x=0时, .
所以不论 为何值,函数 的图象经过 轴上的一个定点(0,1).
⑵①当 时,函数 的图象与 轴只有一个交点;
②当 时,若函数 的图象与 轴只有一个交点,则方程 有两个相等的实数根,所以 , .
综上,若函数 的图象与 轴只有一个交点,则 的值为0或9.
25.在 中, = .
∴EC= ≈ ( ).
在 中,∠BCA=45°,∴
在 中, = .∴ .∴ ( ).
答:电视塔高度约为120 .
26.解⑴直线 与⊙P相切.
如图,过点P作PD⊥AB, 垂足为D.
在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,
∴ .∵P为BC的中点,∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.
∴ ,即 ,∴PD =2.4(cm) .
当 时, (cm)
∴ ,即圆心 到直线 的距离等于⊙P的半径.
∴直线 与⊙P相切.
⑵ ∠ACB=90°,∴AB为△ABC的外切圆的直径.∴ .
连接OP.∵P为BC的中点,∴ .
∵点P在⊙O内部,∴⊙P与⊙O只能内切.
∴ 或 ,∴ =1或4.
∴⊙P与⊙O相切时,t的值为1或4.
27. 解⑴在Rt △ABC中,∠ACB=90°,CD是AB上的中线,∴ ,∴CD=BD.
∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.
∴E是△ABC的自相似点.
⑵①作图略.
作法如下:(i)在∠ABC内,作∠CBD=∠A;
(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.
则P为△ABC的自相似点.
②连接PB、PC.∵P为△ABC的内心,∴ , .
∵P为△ABC的自相似点,∴△BCP∽△ABC.
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.
∴∠A+2∠A+4∠A=180°.
∴ .∴该三角形三个内角的度数分别为 、 、 .
28. 解⑴① , , ,2, , , .
函数 的图象如图.
②本题答案不唯一,下列解法供参考.
当 时, 随 增大而减小;当 时, 随 增大而增大;当 时函数 的最小值为2.
③
=
=
=
当 =0,即 时,函数 的最小值为2.
⑵当该矩形的长为 时,它的周长最小,最小值为 .
热心网友
时间:2022-04-14 18:41
这个文档在百度文库中有的
你可以去参考
http://wenku.baidu.com/view/07fb500103d8ce2f00662370.html
热心网友
时间:2022-04-14 20:49
对的。百度文库上有答案!