发布网友 发布时间:2024-05-06 06:53
共1个回答
热心网友 时间:2024-06-12 20:25
线性方程组分为齐次线性方程和非齐次方程组。一般n元线性方程组的形式是
向左转|向右转
写成矩阵形式就是AX=B,其中A是系数矩阵(m×n),X与B都是1×m列向量
当B=0时,称为齐次线性方程。
方程的解存性可以看做是用A的列向量能否表示出列向量B的问题,所以当B=0时,至少有一组解即X=0,称之平凡解;而当A列向量线性无关时,仅有零解;线性相关时就有无数组解,但是解空间(向量生成的空间)的维数就等于X维数与A的秩的差(n-r,r为A的秩);解空间的基称为方程组的基础解系。
当B≠0时,称为非齐次线性方程(B=0的齐次方程组称为与之对应的齐次线性方程组)。与齐次方程组不同,它可能没有解,有解当且仅当A的秩等于AB合并组成的增广矩阵的秩,说直白就是A的列向量可以表示出B,或者A的列向量组与增广矩阵的列向量组等价。而且有解时,解向量组的秩也等于X的维数与A的秩的差。
齐次方程组的解与非齐次方程组的解关系是:非齐次组的解向量等于齐次组的解+非齐次组的一个特解;也就是说只要求出齐次组的解空间的一组基础解系,比如是α1,α2,……,αs,一个非齐次组的特解比如是X1,,那么非齐次组所有解可以表示为:X=X1+C1α1+C2α2+……+Csα,C1,……,Cs为任意常数。所以求非齐次组的通解只需求出其一个特解,再求出对应的齐次组的基础解系即可。
区别是:齐次组的解可以形成线性空间(不空,至少有0向量,关于线性运算封闭);非齐次组的解不能形成线性空间,因为其解向量关于线性运算不封闭:任何齐次组的解得线性组合还是齐次组的解,但是非齐次组的任意两个解其组合一般不再是方程组的解(除非系数之和为1)而任意两个非齐次组的解的差变为对应的齐次组的解。注意到这一点,就知道,齐次组有基础解系,而非齐次只有通解,不能称为基础解系,因这些解不能生成解空间(线性运算不封闭)。