如何用微积分知识推导球的体积公式?
发布网友
发布时间:2022-04-21 08:19
我来回答
共4个回答
热心网友
时间:2023-09-08 11:47
1、Disk Method——圆盘法:
2、Shell Method——球壳法:
3、General Method——一般法:
扩展资料:
微积分相关:
(1)定积分和不定积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,而牛顿和莱布尼茨则使两者产生了紧密的联系(详见牛顿-莱布尼茨公式)。
(2)常微分方程与偏微分方程
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
参考资料来源:百度百科 - 微积分
参考资料来源:百度百科 - 球体
热心网友
时间:2023-09-08 11:48
楼主等一会,给你三种详细推导(证明)方法,给你做个图片。
不好意思,电脑出了点问题,现在才能将图片传上。几分钟后即可见到。
热心网友
时间:2023-09-08 11:48
x=Rcost,y=Rsint, 0<=t<=pi/2
是第一象限内的圆弧参数方程,你如果愿意当然也可以用普通方程。
那么它和坐标轴围成的四分之一圆绕x轴旋转能形成一个半球,因此
可知半径为R的球的体积为:
V=2∫(0,pi/2)pi*(Rsint)^2d(Rcost)
=2pi*R^3∫(0,pi/2)(1-cos^2t)dcost
=2pi*R^3*(cost-cos^3t/3)|(0,pi/2)
=2pi*R^3*[(cos0-(cos0)^3/3)-(cospi/2-(cospi/2)^3/3)]
=2pi*R^3*(1-1/3)
=4pi*R^3/3
热心网友
时间:2023-09-08 11:49
你可以把球看成是由无数个球壳组成的,每个球壳的面积为4派r的平方,将面积函数积分就是体积了,积分限为0到R。
球的体积公式推导过程是什么?
分析如下:把一个半径为R的球体中心点在坐标原点o上表面分割成许多小块,每一小块的面积为ds,ds四个顶点A,B,C,D之间的距离AB=BC=CD=DA,四个角度相等,由o点指向A,B,C,D所张的立体角为dΩ,这样ds=dΩR。把四个顶点和o点连接,形成一个接近四棱锥体【体积为hL/3 ,h是四棱锥体的高...
随机(正弦)振动
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共...
球体积公式怎么推导出来的
由V半球可推出V球=2×V半球=4/3×πr^3 证毕。
球的体积公式推导过程
首先,公式为 V = πr³。其中 V 代表球的体积,r 代表球的半径,π 是一个常数,约等于 3.14159。这个公式的推导基于积分学的知识。详细解释:1. 积分学基础 球的体积公式是通过积分推导得出的。积分是微积分的基本工具之一,用于计算曲线或曲面下的面积或体积。为了计算球的体积,我们...
如何用高等数学里的微积分(极轴坐标系)推导出圆球的体积公式,求过程...
体积公式 =∫∫∫_V dV 此处是球体,那么利用球坐标 =∫<0,2π>∫<0,π>∫<0,r> ρ^2 sin φ dρdφdθ =∫<0,2π>dθ ∫<0,π>sin φdφ ∫<0,r> ρ^2dρ =2π*[-cosφ |<0,π>]*[ρ^3/3 |<0,r>]=2π*2*r^3/3 =4πr^3/3 希望可以帮助到你,这是...
球的体积公式是怎样推出的?
证一:将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3 。因此一个整球的体积为4/3πR^3 证二:(用到高等数学中的微积分中的三重积分)球是圆...
球体积的计算公式
体积公式: 用微积分中的二重积分可以计算球的体积,但是,你如果不会微积分也没关系,还有另外的方法。用此方法的原理是祖堩原理,具体内容是:夹在两个平行平面的几何体,用 与这两个平面平行的平面去截它们,如果截得的截面的面积总是相等, 那么夹在这两个平面间的几何体的体积相等。为了应用组堩...
球体的体积是怎么推导出来的?
有较多的计算方法,比如可以借用球表面积S=4πr²这个结论,又因为三棱锥的体积公式是底面积×高/3:V=Sh/3 再应用微积分的思想,所以可得球体的体积是:V=Sh/3=4πr²*r/3=(4/3)πr²
球体的体积计算公式微积分推导
切片面积: A = π x² ——— [2]切片体积:用[2]的结果 δv = A * δy δv = π x² δy, 用[1]的结果 δv = π (r² - y²) δy v = ∫{[π (r² - y²)],-r, r} dy v = π ∫{[(r² - y²)],-r, ...
球体的体积
体积推导:以球的一条直径为轴;球心置于坐标原点;所选直径与Z轴重合.则轴上在距球心z处与轴垂直的截面圆半径为r=√(R^2-z^2).其面积为π·r^2=π·(R^2-z^2).则以它为底,以dz为高的圆柱形微元体积为 π·(R^2-z^2)dz.则圆球的体积公式为∫(从-R到R)π·(R^2-z^2)dz ...
试推倒半径为R的球体积公式V=4/3派R^3 用微积分
推导球体积公式估计要用到积分概念,大一学的微积分 半径为R 以球顶一点为原点.设一个截面(平行于x轴的)到原点的距离为h 则截面的面积可表示为 R的平方减去(R-h)的平方再乘以 pi(3.14)可以求出半球的体积是 [R^2-(R-h)^2] pi dh 在o到R上积分 =Rh^2-h^3/3 +C ...