已知:ABC是直角三角形,∠BCA=90,CM、BN分别为AB、AC边上的中线,
发布网友
发布时间:2022-05-01 19:07
我来回答
共2个回答
热心网友
时间:2023-10-24 05:17
设CM与BN相交于D.
因为∠BCA=90°,CM垂直BN,所以△BCN与△BDC相似,从而有BC²=BD*BN.
因为CM、BN分别为AB、AC边上的中线,所以D是重心,所以BD=2/3 BN.
所以BC²=BD*BN=2/3 BN²,所以BN的长为(√6/2)*a
下面证BD=2/3BN,用中位线定理:做NE//CM,因为N为AC中点,所以AE=EM,又M为AB中点,所以BM=2ME,在△BDM和△BNE中,BD/BN=BM/BE=2/3.
热心网友
时间:2023-10-24 05:18
设CM与BN相交于O.
因为∠BCA=90°,CM垂直BN,所以BC²=BO*BN.
因为CM、BN分别为AB、AC边上的中线,所以O是重心,所以BO=2/3 BN.
所以BC²=BO*BN=2/3 BN²,所以BN的长为(√6/2)*a追问BO=2/3BN这个定理没学 麻烦证明一下好吗