问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

紧支集是什么意思,求详细解释,谢谢

发布网友 发布时间:2022-05-01 18:04

我来回答

3个回答

热心网友 时间:2022-06-20 20:01

紧支集: 这个函数的支集是有有限的子集覆盖的。

支集:一个定义在集合X上的实值函数f的支撑集,或简称支集,是指X的一个子集,满足f恰好在这个子集上非0。

紧集:紧集是指拓扑空间内的一类特殊点集,它们的任何开覆盖都有有限子覆盖。从某种意义上,紧集类似于闭集。

扩展资料

一个函数被称为是紧支撑于空间X的,如果这个函数的支撑集是X中的一个紧集。例如,若 X是实数轴,那么所有在无穷远处消失的函数都是紧支撑的。

事实上,这是函数必须在有界集外为0的一个特例。在好的情形下,紧支撑的函数所构成的集合,在所有在无穷远处消失的函数构成的集合中,是稠密集的,当然在给定的具体问题中,这一点可能需要相当的工作才能验证。

参考资料:百度百科-紧集

百度百科-支撑集

热心网友 时间:2022-06-20 20:01

函数的支集是定义域的闭子集E,使在该子集之外F(T)=0,
函数的紧支集是函数的支集是紧支集(泛函分析),
大概就是这样了

支撑集维基百科,自由的百科全书(重定向自紧支集)
跳转到: 导航, 搜索
在数学中,一个定义在集合X上的实值函数f的支撑集,或简称支集,是指X的一个子集,满足f恰好在这个子集上非0。最常见的情形是,X是一个拓扑空间,比如实数轴等等,而函数f在此拓扑下连续。此时,f的支撑集被定义为这样一个闭集C:f在中为0,且不存在C的真闭子集也满足这个条件,即,C是所有这样的子集中最小的一个。拓扑意义上的支撑集是点集意义下支撑集的闭包。

特别地,在概率论中,一个概率分布是随机变量的所有可能值组成的集合的闭包。

[编辑] 紧支撑一个函数被称为是紧支撑于空间X的,如果这个函数的支撑集是X中的一个紧集。例如,若X是实数轴,那么所有在无穷远处消失的函数都是紧支撑的。事实上,这是函数必须在有界集外为0的一个特例。在好的情形下,紧支撑的函数所构成的集合,在所有在无穷远处消失的函数构成的集合中,是稠密集的,当然在给定的具体问题中,这一点可能需要相当的工作才能验证。例如对于任何给定的ε > 0,一个定义在实数轴X上的函数f在无穷远处消失,可以粗略通过通过选取一个紧子集C来描述:

| f(x) − 1C(x)f(x) | < ε
其中1C(x)表示C的指示函数。

注意,任何定义在紧空间上的函数都是紧支撑的。

当然也可以更一般地,将支撑集的概念推广到分布(英语:distribution (mathematics)),比如狄拉克函数:定义在直线上的δ(x)。此时,我们考虑一个测试函数F,并且F是光滑的,其支撑集不包括0。由于δ(F)(即δ作用于F)为0,所以我们说δ的支撑集为{0}。注意实数轴上的测度(包括概率测度)都是分布的特殊情况,所以我们也可以定义一个测度支撑集。

[编辑] 奇支集在傅立叶分析的研究中,一个分布的奇支集或奇异支集有非常重要的意义。 直观地说,这个集合的元素都是所谓的奇异点,即使得这个分布不能局部地看作一个函数的点。

例如,单位阶跃函数的傅立叶变换,在忽略常数因子的情况下,可以被认为是1 / x,但这在x = 0时是不成立的。所以很明显地,x = 0是一个特殊的点,更准确地说,这个分布的傅立叶变换的奇支集是{0},即对于一个支撑集包括0的测试函数而言,这个分布的作用效果不能表示为某个函数的作用。当然这个分布可以表示为一个柯西主值意义下的瑕积分。

对于多变量的分布,奇支集也可以更精确地被描述为波前集(英语:wave front set),从而可以利用数学分析来理解惠更斯原理。奇支集也可以用来研究分布理论中的特殊现象,如在试图将分布'相乘'时候导致的问题(狄拉克函数的平方是不存在的,因为两个相乘的分布的奇支集必须不相交)。

[编辑] 支撑族支撑族是一个抽象的拓扑概念,昂利·嘉当在一个层中定义了这个概念。在将庞加莱对偶性(英语:en:Poincaré ality)推广到非紧的流形上的时候,在对偶的一个方面上引入紧支撑的概念是自然的。

Bredon的书《Sheaf Theory》(第二版 1997)中给出了这些定义。X的一组闭子集Φ是一个支撑族,如果它是下闭的并且它的有限并也是闭的。它的扩张是Φ的并。一个仿紧化(paracompactifying)的支撑族对于任何,在子空间拓扑意义下是一个仿紧空间(英语:paracompact space),并且存在一些是一个邻域。如果X是一个局部紧空间(英语:locally compact space),并且是豪斯多夫空间,所有的紧子集组成的族满足上的条件,那么就是仿紧化的。

热心网友 时间:2022-06-20 20:02

我来回答一个吧,我不是搞小波的,不过在仿真中也用到了紧支撑函数。
用最通俗的话来讲,紧支撑是这样的:
对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0。
那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
比如:在(-1,1)之间的高斯函数。

怎么样?这是地球上最通俗的解释了吧?
紧支集是什么意思,求详细解释,谢谢

紧支集: 这个函数的支集是有有限的子集覆盖的。支集:一个定义在集合X上的实值函数f的支撑集,或简称支集,是指X的一个子集,满足f恰好在这个子集上非0。紧集:紧集是指拓扑空间内的一类特殊点集,它们的任何开覆盖都有有限子覆盖。从某种意义上,紧集类似于闭集。

谁能解释一下里斯定理?

但重要的是,由紧支集在同一有界集内且按某个范数有界的整流组成的集是紧的。正是这一点形成了变分学中新的几何方法。 如果流S可以表示成R+дT,R和T都是可求积流,就称S为整平坦链。利用边缘算子可以建立这类流的同调理论。它与局部李普希茨范畴内的、整系数的经典奇异同调论同构。但对于积分问题,相交理论等...

包工头是什么意思?和承包方是什么关系?求详细解释,谢谢。

紧支集是什么意思,求详细解释,谢谢 我来回答一个吧,我不是搞小波的,不过在仿真中也用到了紧支撑函数。 用最通俗的话来讲,紧支撑是这样的: 对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0。 那么这个函数f(x)就是紧支撑函数,而这个0...

微分流形笔记:第八讲

回顾了微分流形中的核心概念与公式,深入探讨了Stokes公式及其应用。在定向流形的背景下,Stokes公式表明,对于一个可定向的光滑流形M,其边界为N,且N为闭合且满足紧支集条件的子集,满足特定条件的积分之和等于流形上某特定积分的值。接着,详细阐述了诱导定向的概念,通过定义基的等价关系来确定定向,指...

卷积为什么叫卷积?

概率里,卷积出现在求Z=X Y里,x很小的时候,y就很大,当x从左往右积分的时候,y对应的,受限于z=x y,y是从上往下积分,反之,如果x从右往左积分,y是从下往上积分,确实有逆流而上的感觉。也许就是翻译成″卷″的原因吧。这都是个人理解~希望我表达清楚了^^ ...

什么是卷积运算?有什么用处?

这是教育的悲哀!什么是卷积,为什么要用卷积?原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加 将这一个个冲激响应叠加起来就是一个卷积吗!之所以引入卷积,是因为引入了冲激,将这些冲激响应叠加起来,就是卷积 ...

什么是三观怎么解释 支集和紧支集的定义 叹为观止的解释意思 沁人心脾的解释意思 详细的意思 本末倒置的意思解释 紧支集 有紧支集的连续函数 具有紧支集的函数
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
潍坊市再就业办公室在那 2021属鼠结婚黄道吉日一览表 属鼠人2021年适合结婚日子-今日头条_百度... 小区怎么防蛇进入楼道! 楼道里发现了蛇洞怎么办 家楼道里有一条小蛇怎么办 毛孔粗大的男生怎样护理肌肤? 毛孔粗大如何护理 毛孔粗大的肌肤应该怎样护理? 以下属于工程造价计价依据中计算建筑安装工程费用的依据有( )。 风扇声音忽大忽小 最深的海有多深? 海最深是多少? 豪斯多夫空间的引用 海最深有多少米? 大海到底有多深呢?世界上哪个海最深。 世界上最深的海是哪里? 世界上最深的海是哪里? 世界最深的海是那片海 世界上最深的海是什么??! 四大洋的每个洋的深度是多少 生石灰可以延长保质期吗 陈皮能用干燥剂吗…… 进击的干燥剂:诸多妙用知多少 面包干燥剂吃了会怎么样 在食品里加什么可以防潮? 食品包装里的干燥剂有哪些妙用? 食品包装袋中常有的干燥剂是什么化学成分 阿里巴巴矢量图怎么放在vue里边 FL软件将位图转换成矢量图。转换的矢量图是.fla格式,怎么能用在AI,PS... 左边红色,右边绿白黑三色条的是哪个国家的国旗? 世界上最深的海,有多深? 最深的海是多少米? 豪斯多夫紧空间上连续函数的性质(英文) 海的资料 贝尔纲定理的定理的陈述 地球上最深的海洋 去小学见习听课3天.求篇总结 您好,拓扑学中的预t2空间是什么,有什么性质? 海底最深几米? 度量空间中的收敛性? 线性代数里什么叫卷积? 微分流形的概念 在小学二年级实习二星期了。做一个个人总结,哪位帮下忙。 小学教育实习自我总结(从德.能.勤.绩四个方面总结)怎么写? 到小学见习了一周,见习自我总结怎么写 很急的:关于去小学见习的总结 小学个人总结 石屏包浆豆腐要洗吗 《钢铁是怎样炼成的》第十一章概括是什么? 一个人心跳一分钟多少次才正常