详细解释一元二次方程的解法
发布网友
发布时间:2022-04-30 08:47
我来回答
共1个回答
热心网友
时间:2022-06-20 02:47
一元二次方程的解法有如下几种:
第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式
例1:X^2-4X+3=0
本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。
例2:X^2-8X+16=0
本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同)
例3:X^2-9=0
本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。
例4:X^2-5X=0
本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5
第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程:
X^2+2X-3=0
第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。
第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。
还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。
最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。
定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a
举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 •2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般
形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式
法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程
是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方
法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
例5.用适当的方法解下列方程。(选学)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差
公式分解因式,化成两个一次因式的乘积。
(2)可用十字相乘法将方程左边因式分解。
(3)化成一般形式后利用公式法解。
(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
(1)解:4(x+2)2-9(x-3)2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x2+(2- )x+ -3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x2-2 x=-
x2-2 x+ =0 (先化成一般形式)
△=(-2 )2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x2-4mx-10x+m2+5m+6=0
4x2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我
们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方
法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解关于x的一元二次方程x2+px+q=0
解:x2+px+q=0可变形为
x2+px=-q (常数项移到方程右边)
x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)
∴x=- ±=
∴x1= ,x2=
当p2-4q<0时,<0此时原方程无实根。
说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母
取值的要求,必要时进行分类讨论。
练习:
(一)用适当的方法解下列方程:
1. 6x2-x-2=0 2. (x+5)(x-5)=3
3. x2-x=0 4. x2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0
练习参*:
(一)1.x1=- ,x2= 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一个整体,将方程左边分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a• a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
测试
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个
根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1
答案与解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移项得:(x-5)2=0,则x1=x2=5,
注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。
2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.
3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1
时,方程成立,则必有根为x=1。
4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,
则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.
另外,还可以将x=0代入,得c=0,更简单!
5.分析:原方程变为 x2-3x-10=0,
则(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,则原方程无实根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化简,并注意直接开平方时,不要丢根。
8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,
整理为:(x-)2=
方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。
9.分析:x2-2x=m, 则 x2-2x+1=m+1
则(x-1)2=m+1.
中考解析
考题评析
1.(甘肃省)方程的根是( )
(A) (B) (C) 或 (D) 或
评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确
选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元
二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为
C。
另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。
2.(吉林省)一元二次方程的根是__________。
评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。
3.(辽宁省)方程的根为( )
(A)0 (B)–1 (C)0,–1 (D)0,1
评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、
B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。
4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。
评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。
5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方
根,即可选出答案。
如何解一元二次方程?
一元二次方程的5种解法有:直接开平方法;配方法;公式法;因式分解法;图像解法。1、直接开平方法:依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的...
随机(正弦)振动
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共...
一元二次方程怎么解?
一元二次方程四中解法。一、公式法。二、配方法。三、直接开平方法。四、因式分解法。公式法1先判断△=b_-4ac,若△<0原方程无实根;2若△=0,原方程有两个相同的解为:X=-b/(2a);3若△>0,原方程的解为:X=((-b)±√(△))/(2a)。配方法。先把常数c移到方程右边得:aX_...
一元二次方程的解法有哪些
解一元二次方程的基本思想方法是通过“降次”将其化为两个一元一次方程。一元二次方程有四种解法:直接开平方法、配方法、公式法、因式分解法。1、直接开平方法:用直接开平方求解一元二次方程的方法。解形如(x-m)²=n (n≥0)的方程,其解为x=±√n+m。例如:解方程(1)(3x+1)²...
一元二次方程的解法有哪些?
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。1、直接开平方法 形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那...
一元二次方程的解法有哪些?
一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。公式法可以解任何一元二次方程。因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号...
一元二次方程怎么解?
一元二次方程有六种解法:1. 因式分解法:将一元二次方程化成ax^2+bx+c=0的形式后进行拆解,得到两个一元一次方程,进而求解的方法。2. 公式法:通过求解公式x=(b±√(b^2-4ac))/2a来求解一元二次方程的方法。3. 图像法:通过作出ax^2+bx+c=0的图像,观察图像上的交点,从而得到方程的...
一元二次方程的5种解法
一元二次方程的5种解法如下:1、直接开平方法。对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。2、配方法。在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不...
一元二次方程解法
一元二次方程的解法主要包括公式法、配方法、完全平方法等。解释如下:公式法 公式法是一元二次方程最通用的解法,其基础是已知一元二次方程的标准形式为ax²+bx+c=0。只要确定a、b、c的值,就可以利用公式x=)/2a求解。其中,根号内的部分称为判别式,其值决定了方程的根的性质。若判别式...
一元二次方程的解法有哪些?
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。一元二次方程只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是...
一元二次方程的解法有哪些
01、一元二次方程有四种解法,它们分别是直接开平方法,配方法,公式法和因式分解法。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的...