高速光耦资料
发布网友
发布时间:2022-04-30 08:09
我来回答
共1个回答
热心网友
时间:2022-06-19 13:41
单相逆变器智能功率模块应用电路设计
1 引言
智能功率模块(Intelligent Power Mole,IPM)以开关速度快、损耗小、功耗低、有多种保护功能、抗干扰能力强、无须采取防静电措施、体积小等优点在电力电子领域得到越来越广泛的应用。以PM200DSA060型IPM为例,介绍IPM应用电路设计和在单相逆变器中的应用。
2 IPM的结构
IPM由高速、低功率IGBT、优选的门级驱动器及保护电路构成。其中,IGBT是GTR和MOSFET的复合,由MOSFET驱动GTR,因而IPM具有GTR高电流密度、低饱和电压、高耐压、MOSFET高输入阻抗、高开关频率和低驱动功率的优点。
根据内部功率电路配置情况。IPM有多种类型,如PM200DSA060型IPM为D型(内部集成2个IGBT),其内部功能框图如图1所示,内部结构如图2所示。内有驱动和保护电路,保护功能有控制电源欠压锁定保护、过热保护、过流保护和短路保护,当其中任一种保护功能动作时,IPM将输出故障信号FO。
IPM内部电路不含防止干扰的信号隔离电路、自保护功能和浪涌吸收电路,为了保证IPM安全可靠,需要自己设计部分外围电路。
3 IPM的外部驱动电路设计
IPM的外部驱动电路是IPM内部电路和控制电路之间的接口,良好的外部驱动电路对以IPM构成的系统的运行效率、可靠性和安全性都有重要意义。
由IPM内部结构图可见,器件本身含有驱动电路。所以只要提供满足驱动功率要求的PWM信号、驱动电路电源和防止干扰的电气隔离装置即可。但是,IPM对驱动电路输出电压的要求很严格:驱动电压范围为13.5V~16.5V,电压低于13.5V将发生欠压保护,电压高于16.5V可能损坏内部部件;驱动信号频率为5Hz~20kHz,且需采用电气隔离装置,防止干扰:驱动电源绝缘电压至少是IPM极间反向耐压值的2倍(2Vces);驱动电流达19mA-26mA;驱动电路输出端的滤波电容不能太大,这是因为当寄生电容超过100pF时,噪声干扰将可能误触发内部驱动电路。
图3所示是一种典型的高可靠性IPM外部驱动电路方案。来自控制电路的PWM信号经R1限
流,再经高速光耦隔离并放大后接IPM内部驱动电路并控制开关管工作,FO信号也经过光耦隔离输出。其中每个开关管的控制电源端采用独立隔离的稳压15V电源,且接1只10μF的退耦电容器(图中未画出)以滤去共模噪声。R1根据控制电路的输出电流选取,如用DSP产生PWM,则R1的阻值可为330Ω。R2根据IPM驱动电流选值,一方面应尽可能小以避免高阻抗IPM拾取噪声,另一方面又要足够可靠地控制IPM,可在2kΩ~6.8kΩ内选取。C1为2端与地间的0.1μF滤波电容器,PWM隔离光耦的要求是tPLH<0.8μF,tPHL<0.8μF,CMR>10kV/μs,可选用HCPL4503型、HCPL4504型、PS2041型(NEC)等高速光耦,且在光耦输入端接1只0.1μF的退耦电容器(图中未画出)。FO输出光耦可用低速光耦(如PC817)。IPM的内部引脚功能如表1所示。
图3的外部接口电路直接固定在PCB上且靠近模块输入脚,以减少噪声和干扰,PCB上布线的距离应适当,避免开关时干扰引起的电位变化。
另外,考虑到强电可能造成外部驱动电路到IPM引线的干扰,可以在引脚1~4间,3~4间,4—5间根据干扰大小加滤波电容器。
4 IPM的保护电路设计
由于IPM本身提供的保护电路不具备自保护功能。所以要通过外围硬件或软件的辅助电路将内部提供的FO信号转换为封锁IPM的控制信号,关断IPM,实现保护。
4.1 硬件
IPM有故障时,FO输出低电平,通过高速光耦到达硬件电路。关断PWM输出,从而达到保护IPM的目的。具体硬件连接方式如下:在PWM接口电路前置带控制端的3态收发器(如74HC245),PWM信号经过3态收发器后送至IPM接口电路,IPM的故障输出信号FO经光耦隔离输出送入与非门,再送到3态收发器使能端OE。IPM正常工作时,与非门输出为低电平,3态收发器选通;IPM有故障时,与非门输出为高电平,3态收发器所有输出置为高阻态,封锁各个IPM的控制信号,关断IPM,实现保护。
4.2 软件
IPM有故障时,FO输出低电平,FO信号通过高速光耦送到控制器进行处理,处理器确认后,利用中断或软件关断IPM的PWM控制信号,从而达到保护目的。如在基于DSP控制的系统中,利用事件管理器中功率驱动保护引脚(PDPINT)中断实现对IPM的保护。通常1个事件管理器产生的多路PWM可控制多个IPM工作,其中每个开关管均可输出FO信号。每个开关管的FO信号通过与门,当任一开关管有故障时输出低电平,与门输出低电平,将该引脚连至PDPINT,由于PDPINT为低电平时DSP中断,所有的事件管理器输出引脚均被硬件设置为高阻态,从而达到保护目的。
以上2种方案均利用IPM故障输出信号封锁IPM的控制信号通道。因而弥补了IPM自身保护的不足,有效地保护了器件。
5 IPM的缓冲电路设计
在IPM应用中,由于高频开关过程和功率回路寄生电感等叠加产生的di/dt、dv/dt和瞬时功耗会对器件产生较大的冲击,易损坏器件。因此需设置缓冲电路(即吸收电路),目的是改变器件的开关轨迹,控制各种瞬态过压,降低器件开关损耗,保护器件安全运行。
图4为常用的3种IPM缓冲电路。图4(a)为单只无感电容器构成的缓冲电路。对瞬变电压有效且成本低,适用于小功率IPM。图4(b)为RCD构成的缓冲电路,适用于较大功率IPM,缓冲二极管D可箝住瞬变电压。从而抑制由于母线寄生电感可能引起的寄生振荡。其RC时间常数应设计为开关周期的l/3,即τ=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路。适用于大功率IPM。功能类似于图4(b)所示的缓冲电路,其回路电感更小。若同时配合使用图4(a)所示的缓冲电路,还能减小缓冲二极管的应力,缓冲效果更好。
在图4(c)中,当IGBT关断时,负载电流经缓冲二极管向缓冲电容器充电,同时集电极电流逐渐减少,由于电容器二端的电压不能突变,所以有效地*了IGBT集电极电压上升率dv/dt。也避免了集电极电压和集电极电流同时达到最大值。IGBT集电极母线电感、电路及其元件内部的杂散电感在IGBT开通时储存的能量,这时储存在缓冲电容器中。当IGBT开通时。集电极母线电感以及其他杂散电感又有效地*了IGBT集电极电流上升率di/dt。同样也避免了集电极电压和集电极电流同时达到最大值。此时,缓冲电容器通过外接电阻器和IGBT开关放电,其储存的开关能量也随之在外接电阻器和电路、元件内部的电阻器上耗散。如此。便将IGBT运行时产生的开关损耗转移到缓冲电路,最后在相关电阻器上以热的形式耗散,从而保护IGBT安全运行。
图4(c)中的电阻值和电容值按经验数据选取:如PM200DSA060的电容值为0.22μF一0.47μF,耐压值是IGBT的1.1倍~1.5倍,电阻值为10Ω~20Ω,电阻功率按P=fCU2*10-6计算,其中f为IGBT工作频率,U为IGBT的工作峰值电压,C为缓冲电路与电阻器串联电容。二极管选用快恢复二极管。为了保证缓冲电路的可靠性。可以根据功率大小选择封装好的图4所示的缓冲电路。
另外,由于母线电感、缓冲电路及其元件内部的杂散电感对IPM尤其是大功率IPM有极大的影响,因此愈小愈好。要减小这些电感需从多方面入手:直流母线要尽量地短;缓冲电路要尽可能地靠近模块;选用低电感的聚丙烯无极电容器、与IPM相匹配的快速缓冲二极管及无感泄放电阻器。
6 IPM在单相全桥逆变器中的应用
图5所示的单相全桥逆变电路主要由逆变电路和控制电路组成。逆变电路包括逆变全桥和滤波电路,其中逆变全桥完成直流到交流的变换,滤波电路滤除谐波成分以获得需要的交流电:控制电路完成对逆变桥中开关管的控制并实现部分保护功能。
图中的逆变全桥由4个开关管和4个续流二极管组成,工作时开关管在高频条件下通断。开关瞬间开关管电压和电流变大,损耗大,结温升高,加上功率回路寄生电感、振荡及噪声等,极易导致开关管瞬间损坏,以往常用分立元件设计开关管的保护电路和驱动电路,导致电路庞大且不可靠。
笔者采用一对PM200DSA060双单元IPM模块分别代替图中V1、D1、V2、D2组合和V3、D3、V4、D4组合构成全桥逆变电路,利用DSP对IPM的控制,完成了中频率20kW、230V逆变器的设计和调试,采用了如上所述的驱动电路、图4(c)中的缓冲电路和基于DSP控制的软件IPM保护电路。设计实践表明:使用IPM可简化系统硬件电路、缩短系统开发时间、提高可靠性、缩小体积,提高保护能力。