发布网友 发布时间:2022-05-01 06:41
共1个回答
热心网友 时间:2022-05-11 15:58
摘要很高兴为您服务从大数据应用来看,一般需要经历基础设施部署、数据收集与加工、数据分析和场景运用等四个阶段。对于企业来说,前三个阶段的工作具有一定的普适性。最大的区别在于场景运用。离开了具体场景,大数据犹如离山之虎、浅滩之龙,功用会大打折扣。换句话说,会不会将大数据与场景融合,是检验企业大数据管理能力的试金石。对企业来说,场景是一个真实存在但又难以把握的东西。它既包括物理空间,也包括虚拟空间;既包括经济、社会环境,也包括文化氛围。如果从整个供应链看,供方和企业内部生产办公场所是一种场景,提供服务的营业场所是另一种场景,产品售出后其使用和运行的环境也属于企业需要关心的重要场景。有了大数据,可以做的第一件事是分析企业重要场景中的要素,然后尽量将其数据化,以便于分析。从大数据角度看,我们区分场景中存在的三类要素: 第一类是客观、可控和可数据化的因素,比如温度、湿度、位置等。第二类是相对主观、只能部分数据化和控制的,但一定程度上可以分析:比如人员之间的朋友关系,与用户互动交谈、用户对服务的态度等,可以利用扩展大数据的功能,开展田野试验的方法,尽可能进行收集和分析。 第三类是无法或不可利用大数据来监测的。这可能是由于客观条件*,如无法接入互联网,也可能是由于法律、伦理和隐私的原因,如涉及个人隐私信息,用户拒绝监控。 结合上述两个维度,可以对数据与场景的融合情况分类如下:从生产办公,到销售服务,再到售后,是产品或服务的控制权和所有权从企业向客户端转移和让渡,最终脱离企业控制范围的过程。各类场景对企业变得越来越模糊,比如用户是否正确使用产品、是否能保持忠诚度等。模糊性对企业意味着信息不对称,如何解决这一问题是传统企业的痛点。随着互联网的出现,企业可以借助于嵌入式芯片和智能终端持续收集数据,利用算法分析不同的场景因素,很大程度减少场景的不确定性。在此基础上,企业通过与用户的互动,得到更清晰的用户画像和场景描绘。据此修正和优化企业决策,改进产品和服务。用大数据之烛照亮原先对企业来说处于黑暗中的场景,将其数据化。场景经过数据化,本身可以构成为大数据模型和分析的一部分,从而变得可控,是数据与场景融合的第一种方式。 咨询记录 · 回答于2021-11-04迪斯尼乐园手环的应用是大数据思维方式的什么体现您好,感谢您的提问打字需要一点时间,我很快会回复您的,请您稍等几分钟很高兴为您服务从大数据应用来看,一般需要经历基础设施部署、数据收集与加工、数据分析和场景运用等四个阶段。对于企业来说,前三个阶段的工作具有一定的普适性。最大的区别在于场景运用。离开了具体场景,大数据犹如离山之虎、浅滩之龙,功用会大打折扣。换句话说,会不会将大数据与场景融合,是检验企业大数据管理能力的试金石。对企业来说,场景是一个真实存在但又难以把握的东西。它既包括物理空间,也包括虚拟空间;既包括经济、社会环境,也包括文化氛围。如果从整个供应链看,供方和企业内部生产办公场所是一种场景,提供服务的营业场所是另一种场景,产品售出后其使用和运行的环境也属于企业需要关心的重要场景。有了大数据,可以做的第一件事是分析企业重要场景中的要素,然后尽量将其数据化,以便于分析。从大数据角度看,我们区分场景中存在的三类要素: 第一类是客观、可控和可数据化的因素,比如温度、湿度、位置等。第二类是相对主观、只能部分数据化和控制的,但一定程度上可以分析:比如人员之间的朋友关系,与用户互动交谈、用户对服务的态度等,可以利用扩展大数据的功能,开展田野试验的方法,尽可能进行收集和分析。 第三类是无法或不可利用大数据来监测的。这可能是由于客观条件*,如无法接入互联网,也可能是由于法律、伦理和隐私的原因,如涉及个人隐私信息,用户拒绝监控。 结合上述两个维度,可以对数据与场景的融合情况分类如下:从生产办公,到销售服务,再到售后,是产品或服务的控制权和所有权从企业向客户端转移和让渡,最终脱离企业控制范围的过程。各类场景对企业变得越来越模糊,比如用户是否正确使用产品、是否能保持忠诚度等。模糊性对企业意味着信息不对称,如何解决这一问题是传统企业的痛点。随着互联网的出现,企业可以借助于嵌入式芯片和智能终端持续收集数据,利用算法分析不同的场景因素,很大程度减少场景的不确定性。在此基础上,企业通过与用户的互动,得到更清晰的用户画像和场景描绘。据此修正和优化企业决策,改进产品和服务。用大数据之烛照亮原先对企业来说处于黑暗中的场景,将其数据化。场景经过数据化,本身可以构成为大数据模型和分析的一部分,从而变得可控,是数据与场景融合的第一种方式。 DC是BA