考你很简单的一个问题--什么的平方等于负一?
发布网友
发布时间:2022-04-30 21:17
我来回答
共5个回答
热心网友
时间:2023-05-22 20:47
虚数
开放分类: 词语、数学、词汇、数词、复数
目录
• 虚数的意义
• 虚数的符号
• 虚数的历史
• 描述虚数
虚数的意义
[编辑本段]
(1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶复数中a+bi,b不等于零时叫虚数(3)[暂无英文]:汉语中不表明具体数量的词在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数和实数组成复数。这种数一个专门的符号“i”(imaginary)。我们可以把正虚数写为(+i),把负虚数写为(-i),而把+1看作是一个正实数,把(-1)看作是一个负实数。因此我们可以说√ ̄(-1)=±i。我们甚至还可以在作图时把虚数系统画出来。假如你用一条以0点作为中点的直线来表示一个正实数系统,那么,位于0点某一侧的是正实数,位于0点另一侧的就是负实数。这样,当你通过0点再作一条与该直线直角相交的直线时,你便可以沿第二条直线把虚数系统表示出来。第二条直线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。 注:虚数也有大小; 虚数没有一维正负,但有二维正负; 整数准确地应当划分为实整数和虚整数.
虚数的符号
[编辑本段]
1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i=√(-1)表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,不等于0时叫非纯虚数,b等于0时就叫实数),称为复数。
通常,我们用符号C来表示复数集,用符号R来表示实数集。
虚数的历史
[编辑本段]
要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。
有理数出现的非常早,它是伴随人们的生产实践而产生的。
无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。
不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与连长的比不能用任何“数”来表示。西亚他们已经发同了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。
无理数的确定与开方运算息息相关。对于那些非完全平方数,人们发现它们的平方根是可以无*地求到任意多位的无限不循环小数。(像π=3.141592625…,E=2。71828182…等),称为无理数。
但是当无理数的位置确定后,人们又发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在褛范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。
到了16世纪,卡尔达诺的<大衍术>第一次大胆使用了负数平方根的概念。如果不使用负数平方根,就是可能决四次方程的求解问题。虽然他写出院负数的平方根,但他却犹豫不次,他不得不声明,这个表达式是虚构的,想像的,并么一次称它为”虚数”但是数学家们使用它时,还是非常小心谨慎,就连著名的数学家欧拉在使用虚数时也不得不给自己的论文加上一个评语。一切形如√-1,√-2的数学式,都是不可能有的、想像的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么。它们线性虚幻。虽然大师的这段话读起来有些拗口,但从中可以看出他他和虚数时也不那么理直气壮。 对于早期的数学家们来说,使得虚数成为似乎是合理的和可以接受的倒不是像x^2+1=0这样的二次方程的求解问题,而是具有实数根的三次方程求解问题。
1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:
形如:x^3+ax+b=0的三次方程解如下:
x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)
当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:
x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)
在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。
因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。
可是虚数的出现,却帮了无理数的大忙,无理数和有理数相比,底气显得有些不足,但是在虚数面前,它和有理数一样,都是实实在在的数所以数学家才把它同有理数合称为实数,这样就可以和虚数区别开来。有趣的是,虚数也非常顽强,它就如同实数在镜子里的映像一样,不仅同实数形影不离,而且还常常同实数结合起来,构成复数。
虚数,人们开始称之为“实数的鬼魂”,1637年笛卡儿称为“想像中的数”,于是一切虚数都具有BI,而复数则具有a+bi,这里a和b都是实数。虚数也常称为纯虚数。
虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。从卡尔达诺的<大衍术>开始,在200年的时间里,虚数一直披着一层神秘莫测、不可思议的面纱,到了1797年,威赛尔给出了虚线的图像表示,才确立了虚数的合理地位。他和阿尔干一起借助于17世纪法国数学家笛卡儿建立的平面坐标系,给复数做了一是到数学界认要的几何解释。后来,高斯使直角坐标平面上的点和复数建立了一一对应的关系,虚数才广为人知。现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚。
描述虚数
[编辑本段]
虚数原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。译自《人文数学网络期刊》22期48页IMAGINARYby Lawrence Mark LesserArmstrong Atlantic State UniversityImaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I'm using right now -- A.C.!You say it's absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." Ah-hai!from the Humanistic Mathematics Network Journal # 22, p. 48.原载《科学时报》2003年2月14日科学周末 [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致
参考资料:http://ke.baidu.com/view/1302.htm
热心网友
时间:2023-05-22 20:47
你好!
古代时没有,后来数学家就定义了一个
虚数i平方等于-1
希望对你有所帮助,望采纳。
热心网友
时间:2023-05-22 20:48
以前没有,后来为了计数方便,数学家就定义了一个虚数i,并定义
i的平方为-1
三次方是-i
四次方是1
热心网友
时间:2023-05-22 20:49
虚数i的平方等于负一
i本身代表的就是不存在的数
还可以说 爱的平方等于负一
热心网友
时间:2023-05-22 20:49
古代时没有,后来数学家就定义了一个
虚数i平方等于-1
考你很简单的一个问题--什么的平方等于负一?
(1)[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶复数中a+bi,b不等于零时叫虚数(3)[暂无英文]:汉语中不表明具体数量的词在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数和实数组成复数。这种数一个专门的符号“i”(imaginary)。我们可以把正虚数写为(+i),把负虚数写...
复数i的平方为什么等于-1
(1)i的平方为-1 (2)i可以与任何实数进行运算,而且以前所学过的运算定律也一样适用 这只是一种规定,这是为了解决负数开方问题而规定的数。那么它就应该有一般性和单位性,任何负数都可以写成-1与这个数绝对值之积的形式,而我们知道正数是可以开偶次方的,因此只要解决-1开平方就可以了,由此...
虚数i的平方为什么等于负1
当ω=(-1+√3i)/2或ω=(-1-√3i)/2时:ω^2 + ω + 1 = 0 ω^3 = 1参考资料:百度百科 这样规定的啦~ 希望采纳!谢谢
x的平方等于负1,那x等于多少呢
x的平方等于-1, 则x的值是√(-1)=虚数i。在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i, 即√(-1)=i 。另外, 虚数是没有正负可言的。不是实数的复数,即使是纯虚数,也不能比较大小。
负一的平方是什么?
-1的平方=1 负数的平方就是等于它的绝对值的平方 -1的平方等于1的平方,-2 的平方等于2的平方。
众所周知当x^2=-1时,==〉x=i;那当x^(1/2)=-1时,x=?
首先说一下,你的第一句话有点问题,i^2=-1不假。但是(-i)^2=-1 所以当x^2=-1时,==〉x=i或x=-i 虚数的开方和实数不同,实数里例如4平方根是2,但是2和-2的平方都等于4,但是我们只取2为根号4的值。也就是说,如果a是b的平方,但b不一定是a的平方根。复数的开方中通常要用到...
负x的平方等于x的平方吗?
如果是-x平方就可正可负,(-x )平方就一定是正。如果是(-x)²的话,是等于x²的。如果是-(x)²的话,跟x²是不等的。(-x)²读作负x的平方,—x²读作x的平方的相反数,注意这两者的区别。现代汉语词典释义:①指数是2的乘方。②指平方米。边长的...
tanx的平方为什么等于(sec的平方-1)
因为 tan x = sin x / cos x, (sin x)^2 + (cos x)^2 = 1,由此可得出以上结论。对于 sec x , 正割指的是直角三角形,斜边与某个锐角的邻边的比,叫做该锐角的正割,用 sec(角)表示。正割是余弦函数的倒数。函数性质 (1)定义域,x不能取90度,270度,-90度,-270度等值;即为...
关于光速的一个问题
如果我们应用爱因斯坦的方程,它就会告诉我们说,这时物体质量将等于(负的负1的平方根)公斤,它的长度将变成(负1的平方根)厘米。 换句话说,任何一个运动得比光还快的物体,都会具有必须用数学上所谓“虚数”来表示的质量和长度。我们没有任何办法把用虚数表示的质量和长度具体化,所以,大家就很容易认为,这样的东西...
(-2)的平方和-2的平方有什么区别?
(-2)的平方与-2的平方的区别如下。1、两者的计算结果不一样 (1)(-2)的平方=(-2)^2=4。(2)-2的平方=-2^2=-4。2、两者表示的含义不一样 (1)(-2)^2表示两个(-2)相乘,即(-2)^2=(-2)x(-2)。(2)-2^2表示2^2的相反数。-2^2=-(2^2)。