发布网友 发布时间:2022-04-30 22:08
共1个回答
热心网友 时间:2022-06-19 09:05
圆锥体体积的推导方法:
方法一:初等的方法
设圆锥高为H,底面半径为R,底面积S=π*R^2;
用平行于底面的平面把它切成n片,则每片的厚度为H/n;
可把每片近似看做底半径为k/n*r的圆柱;
其体积为(π*k/n*r)^2*h/n,对k=1到n求和得:
S=πR^2H*(1/6/n^3)*n*(n+1)*(2n+1),
令n=无穷大,则S=1/3πR^2H。
方法二:通过圆柱来推导
任何物体的体积都离不开底面积×高的求法;
圆柱的体积公式是V=Sh;
把与它等底等高的圆锥装满水,倒进圆锥体里,可以发现倒3次才能倒满圆柱。
所以与圆柱等底等高的圆锥是这个圆柱的三分之一;所以,圆锥的体积就是V=1/3Sh 三分之一乘底面积乘高。
圆锥体的体积由圆柱推导而来。
设 h为圆台的高, r和R为棱台的上下底面半径, V 为圆台的体积。由于圆台是由一个平面截去圆锥的一部分(也就是和原来圆锥相似的一个小圆锥)得到,所以计算体积的时候,可以先算出原来圆锥的体积。再减去和它相似的小圆锥的体积。