发布网友 发布时间:2022-04-20 14:54
共3个回答
懂视网 时间:2022-07-08 15:04
1、琴生不等式以丹麦技术大学数学家约翰?延森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。
2、琴生不等式可以用测度论或概率论的语言给出。这两种方式都表明同一个很一般的结果。函数换作实值随机变量(就纯数学而言,两者没有分别)。在空间上,任何函数相对于概率测度的积分就成了期望值。至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明。
热心网友 时间:2022-07-08 12:12
琴生不等式是丹麦数学家琴生于1905年到1906年间建立的。利用琴生不等式我们可以得到一系列不等式,比如“幂平均不等式”,“加权的琴生不等式”等等。热心网友 时间:2022-07-08 13:30
琴生不等式是丹麦数学家琴生于1905年到1906年间建立的。利用琴生不等式我们可以得到一系列不等式,比如“幂平均不等式”,“加权的琴生不等式”