发布网友 发布时间:2022-04-30 02:55
共3个回答
热心网友 时间:2023-10-09 02:31
科学家已经发现了200多种与运动能力有关的基因,有些人仿佛天生就具有运动能力。比如曾在德国柏林诞生的一名新生儿,他所拥有的发达肌肉让医生大吃一惊。这位“超级宝贝”4岁时就可以举起重达3公斤的哑铃。2000年耗资30亿美元的人类基因组计划“工作框架图”完成后,生命似乎有了一种全新的解析方式。
DNA中含有基因的2万多个区域的定位,它们就像人体说明书,同时也是决定身体成长的密码。运动基因就隐藏在这个庞大而复杂的“密码库”中。研究发现那名婴儿之所以成为大力神,是因为体内拥有两种基因的罕见突变,减缓了其体内肌肉生长抑制素的生成。运动基因的研究是一项非常浩大的工程。他们寻找长跑高手和志愿捐献基因样本的普通人,研究人员从实验对象体内抽出3毫升血液,再从中提取DNA。如同“一小团棉花”般的样本就被冷冻在零下40摄氏度左右的冰箱里,等待科学家为它们破解运动密码。
在英国和澳大利亚等国,科学家们都在优秀的自行车或长跑运动员体内发现了这段微小的插入性序列。有关研究表明,人类运动基因99%是相同的,只有1%不同。而正是这1%造成了不同种族在运动能力方面的差异。运动基因 - 代表基因ACE血管紧张素转换酶(ACE)基因与杰出耐力有关。在对比33名英国优秀登山运动员和近二千名健康男性的ACE基因后,发现前者的插入型ACE-I基因频率明显更高。后续研究发现,径赛的耐力要求越高,参赛运动员拥有插入型ACE-I的频率也就越高。
ACTN3辅机动蛋白3(ACTN3)则是科学家研究最早也最为透彻的运动基因。这种基因的R型变异可能让人体生成一种存在于快肌纤维中的蛋白质,为人体提供爆发力,而X型变异则会抑制这种蛋白质的生成。ACTN3基因也因此得名“速度基因”。在短跑、举重这样需要瞬时爆发力项目的运动员中,这个正常基因的携带比例高达92%。而在中长跑等耐力项目中,这个基因出现的频率只有20%—30%。CKMMCKMM基因提升运动空间:人的肌原纤维分为I型和II型两大类,并由此组成了慢肌和快肌。慢肌纤维更多的依赖有氧代谢,快肌纤维则主要由无氧代谢提供短期能量。普通人两种肌肉比例相当,而运动员肌肉分布截然不同,慢肌的比例可以低至19%%或高达95%,前者将会成为百米“飞人”,后者则可能是马拉松冠军。运动基因 - 遗传性从奥运会的历史上,我们不难发现这样的“巧合”:美国小将柳金是前苏联体操名将柳金的女儿;拳王阿里的女儿莱拉接过父亲的手套,成了无往不胜的世界女拳王;姚明的父母都曾是篮球队的主力,其中一位曾担任中国女篮队长……
这样的“体育家族”让人们得出这样的结论:运动基因很可能在家族间流动。24次刷新世界纪录的伊辛巴耶娃是历史上最伟大的女子撑杆跳运动员,她拥有五项重要赛事冠军头衔(奥运会、室内世锦赛、室外世锦赛、室内欧锦赛和室外欧锦赛)。伊辛巴耶娃的妈妈曾经是位业余篮球运动员,因此她从小便遗传了妈妈的良好运动基因。[3]2012年伦敦奥运会上,安妮公主的大女儿扎拉菲利普斯获得马术亚军。一直以来都以超越自己母亲为目标的她终于完成了超越,成为了奥运会的银牌得主(安妮公主虽然参加了蒙特利尔奥运会,但因为跌下马而没有成绩)。后面,她将向自己的父亲的纪录发起冲击(慕尼黑奥运会马术冠军)。[4]运动能力不止和基因有关,也和一定运动经验的传承有关。家里都是运动健将的能够更好的把自己的经验传给后代。人类之所以能够有今天,靠的不只是基因的传承,最重要的技能是记忆的传承。因纽特人这个不是很清楚。毕竟还有甲基化的遗传等等,还有人类很聪明,会想办法取暖。不见得一定天生耐寒才能活下去。
这个的研究我不了解,会有人来给你回答的。但韩国人喜欢整容猜测应该不是基因的原因,因为只要长得丑的都想整容,只是怕受到指责和承担风险。
热心网友 时间:2023-10-09 02:32
遗传学中的亲子概念不限于父*女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。基因相互作用与信号传导网络的系统生物学研究是系统遗传学的内容。
由一个受精卵产生的免疫活性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。
从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。
微生物遗传学的划分是因为微生物与高等动植物的*很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。
热心网友 时间:2023-10-09 02:32
遗传学与生物化学的关系最为密切,和其他许多生物学分支学科之间也有密切关系。例如发生遗传学和发育生物学之间的关系;行为遗传学同行为生物学之间的关系;生态遗传学同生态学之间的关系等。此外,遗传学和分类学之间也有着密切的关系,这不仅因为在分类学中应用了DNA碱基成分和染色体等作为指标,而且还因为物种的实质也必须从遗传学的角度去认识。
各个生物学分支学科所研究的是生物的各个层次上的结构和功能,这些结构和功能无一不是遗传和环境相互作用的结果,所以许多学科在概念和方法上都难于离开遗传学
。例如激素的作用机制和免疫反应机制一向被看作是和遗传学没有直接关系的生理学问题,可是现在知道前者和基因的激活有关,后者和身体中不同免疫活性细胞克隆的选择有关。