发布网友 发布时间:2022-04-30 01:31
共1个回答
热心网友 时间:2022-06-28 02:18
二阶群一定是循环群。
设p为素数,|G|=p,由于G的所有元素的阶都可以被p整除,故任取a∈G,a的阶要么是1要么是p,若a≠1,则a的阶=p,如此a^p=1且a、a^2、a^3…a^(p-1)∈G,又因为|G|=p,故G={1,a,a^2…a^(p-1)},这就证明了G是循环群。
含义
由于群之间的同构关系具有反身性、对称性和传递性,故这个定理告诉我们,凡无限循环群都彼此同构,凡有限同阶循环群都彼此同构,而不同阶的群,由于不能建立双射,当然不能同构。这样抽象地看,即在同构意义下,循环群只有两种,即整数加群和模n的剩余类加群。