发布网友 发布时间:2022-04-30 01:34
共4个回答
热心网友 时间:2022-06-28 03:46
不对,因为具有偏导数的极值点必是驻点,但是驻点不一定是极值点。极值点不一定是驻点,也可能是不可导点 。
最值点可以有多个,比如y=sinx,2kπ+π/2都是最值点,也是极值点。最值点也可能不存在,比如y=x闭区间上一定有最大值点和最小值点,开区间则不一定。最值点是对全部定义域而言,而极值点就是局部最值点。
扩展资料
对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况。
反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。函数的一阶导数为0的点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
热心网友 时间:2022-06-28 03:47
极值点的存在范围情况有两种:1、驻点,2、导数不存在,但在该点连续的点;热心网友 时间:2022-06-28 03:47
这个不正确!热心网友 时间:2022-06-28 03:48
不一定,例如y=x^3,