波的叠加原理
发布网友
发布时间:2022-05-02 01:12
我来回答
共5个回答
热心网友
时间:2022-06-26 00:15
波的叠加原理是物理学的基本原理之一。介质中同时存在几列波时,每列波能保持各自的传播规律而不互相干扰。在波的重叠区域里各点的振动的物理量等于各列波在该点引起的物理量的矢量和。在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和,当两列波振动方向在同一直线上时,这两个位移的矢量和在选定正方向后可简化为代数和。
波的叠加原理是物理学的基本原理之一。介质中同时存在几列波时,每列波能保持各自的传播规律而不互相干扰。在波的重叠区域里各点的振动的物理量等于各列波在该点引起的物理量的矢量和。在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和,当两列波振动方向在同一直线上时,这两个位移的矢量和在选定正方向后可简化为代数和。
注意:只有当波的强度较小,波动方程变现为线性方程时,波的叠加原理才普遍成立。
波是指振动的传播。电磁振动的传播是电磁波。为直观起见,以绳子抖动这种最简单的为例,在绳子的一端有一个上下振动的振源,振动沿绳向前传播。从整体看波峰和波谷不断向前运动,而绳子的质点只做上下运动并没有向前运动。
波动是物质运动的重要形式,广泛存在于自然界。被传递的物理量扰动或振动有多种形式,机械振动的传递构成机械波,电磁场振动的传递构成电磁波(包括光波),温度变化的传递构成温度波(见液态氦),晶体点阵振动的传递构成点阵波(见点阵动力学),自旋磁矩的扰动在铁磁体内传播时形成自旋波(见固体物理学),实际上任何一个宏观的或微观的物理量所受扰动在空间传递时都可形成波。最常见的机械波是构成介质的质点的机械运动(引起位移、密度、压强等物理量的变化)在空间的传播过程,例如弦线中的波、水面波、空气或固体中的声波等。产生这些波的前提是介质的相邻质点间存在弹性力或准弹性力的相互作用,正是借助于这种相互作用力才使某一点的振动传递给邻近质点,故这些波亦称弹性波。振动物理量可以是标量,相应的波称为标量波(如空气中的声波),也可以是矢量,相应的波称为矢量波(如电磁波)。振动方向与波的传播方向一致的称纵波,相垂直的称为横波。
各种形式的波的共同特征是具有周期性。受扰动物理量变化时具有时间周期性,即同一点的物理量在经过一个周期后完全恢复为原来的值;在空间传递时又具有空间周期性,即沿波的传播方向经过某一空间距离后会出现同一振动状态(例如质点的位移和速度)。因此,受扰动物理量u既是时间t,又是空间位置r的周期函数,函数u(t,r)称为波函数或波动表示式,是定量描述波动过程的数学表达式。广义地说,凡是描述运动状态的函数具有时间周期性和空间周期性特征的都可称为波,如引力波,微观粒子的概率波(见波粒二象性)等。
各种波的共同特性还有:①在不同介质的界面上能产生反射和折射,对各向同性介质的界面,遵守反射定律和折射定律(见反射定律、折射定律);②通常的线性波叠加时遵守波的叠加原理(见光的独立传播原理);③两束或两束以上的波在一定条件下叠加时能产生干涉现象(见光的干涉);④波在传播路径上遇到障碍物时能产生衍射现象(见光的衍射);⑤横波能产生偏振现象(见光学偏振现象)。
波的形式是多种多样的。它赖以传播的空间可以是充满物质的,也可以是真空(对电磁波而言)。有些形式的波能为人们的感官所感觉,有些却不能。人们最熟悉的是水面波,它有几种类型。例如,在深水的表面,有主要以重力为恢复力的表面波,典型波长为1m到100m;有主要以表面张力为恢复力的涟波,波长约短于0.07m。这两种波常具有正弦形状。在深水内部则有内重力波,出现在海洋内有密度分层的区域。不只在海洋里,在大气层里,也可以出现内重力波。空气中更广泛遇到的,当然是声波。声波中传播的是空气中压强、密度等物理量的扰动,扰动指对无声波时原有值的偏离。
固体里不断发生着波动。从大的实物讲,如地球上经常出现地震波;从小的实物讲,如晶体的原子点阵间无时不在传动的点阵波。对具有特殊物理性质的固体材料,还可以激发一些特殊的波:如在压电材料里可有电声表面波;在铁磁材料里可有自旋波、磁弹波等。在等离子体里也可以激发一些不同类型的波。在地球的电离层内,由于随流体运动的磁感线对流体施加磁压,并由于流体压能够自动调整以平衡变化着的磁压,于是可以激发沿着磁感线传播的一种磁声波。这只是等离子体内可以产生的许多类型波之一。
热心网友
时间:2022-06-26 00:15
1.独立传播原理:两列波相遇后,每列波仍像相遇前一样,保持各自原来的波形,继续向前传播
2.波的叠加原理:几列波相遇时能继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和
(1)波的叠加区域内的质点同时参与各列波引起的振动,质点的所有运动学矢量(如速度、加速度)都等于各列波分别引起的矢量和。
(2)波的叠加原理是波具有独立传播性的必然结果,由于总位移是两个位移的矢量和,所以叠加区域的质点的位移可能增大,也可能减小
振动加强点和减弱点的判断方法:
(1)加强点和减弱点的理解:不能认为加强点的位移始终最大,减弱点的位移始终最小,而应该是振幅增大的点为加强点,其实这点也在振动,位移可为零,振幅减小的点为减弱点。
(2)条件判断法:对振动情况完全相同的两个波源,在同一介质中形成的两列波的重叠区内,某点的振动是加强还是减弱,取决于两个相干波源到该点的波程差△r:
①若,则该点振动加强;
②若则该点振二动减弱。
(3)现象判断法
若某点总是波峰与波峰(或波谷与波谷)相遇,该点为加强点,若总是波峰与波谷相遇,则为减弱点。
若某点在时刻不是波峰、波谷这些特殊状态 的相遇点时,可沿波传播方向下推时的状态进行判定。如E点,再经过时,两列波的波峰都传播到E点,故E点是一加强点,而经时传播到F点的斗是一列波的波峰和另一列波的波谷,故F点是振动减弱点。

(4)间隔法
在波的干涉区域内,加强带与减弱带是相互间隔交替出现的。有时可利用此规律来判定加强点或减弱点的位置。
(5)速度合成法
在两列波相遇时,若两列波分别引起某质点的振动方向总是相同,该质点是振动加强点,否则为振动减弱点。
热心网友
时间:2022-06-26 00:16
一般来说,电器正常工作就是指达到额定功率
.串联电路:把元件逐个顺次连接起来组成的电路。如图,特点是:流过一个元件的电流同时也流过另一个。例如:节日里的小彩灯。
在串联电路中,闭合开关,两只灯泡同时发光,断开开关两只灯泡都熄灭,说明串联电路中的开关可以控制所有的用电器。
2.并联电路:把元件并列地连接起来组成的电路,如图,特点是:干路的电流在分支处分两部分,分别流过两个支路中的各个元件。例如:家庭中各种用电器的连接。
在并联电路中,干路上的开关闭合,各支路上的开关闭合,灯泡才会发光,干路上的开关断开,各支路上的开关都闭合,灯泡不会发光,说明干路上的开关可以控制整个电路,支路上的开关只能控制本支路
3.串联电路和并联电路的特点:
在串联电路中,由于电流的路径只有一条,所以,从电源正极流出的电流将依次逐个流过各个用电器,最后回到电源负极。因此在串联电路中,如果有一个用电器损坏或某一处断开,整个电路将变成断路,电路就会无电流,所有用电器都将停止工作,所以在串联电路中,各几个用电器互相牵连,要么全工作,要么全部停止工作。
在并联电路中,从电源正极流出的电流在分支处要分为两路,每一路都有电流流过,因此即使某一支路断开,但另一支路仍会与干路构成通路。由此可见,在并联电路中,各个支路之间互不牵连。
4.怎样判断电路中用电器之间是串联还是并联:
串联和并联是电路连接两种最基本的形式,它们之间有一定的区别。要判断电路中各元件之间是串联还是并联,就必须抓住它们的基本特征:具体方法是:
(1)用电器连接法:分析电路中用电器的连接方法,逐个顺次连接的是串联;并列在电路两点之间的是并联。
(2)电流流向法:当电流从电源正极流出,依次流过每个元件的则是串联;当在某处分开流过两个支路,最后又合到一起,则表明该电路为并联
热心网友
时间:2022-06-26 00:16
在几列波传播的重叠区域内,质点要同时参与由几列波引起的振动,质点的总位移等于各列波单独存在时在该处引起的振动位移的矢量和。
量子力学中这样描述微观粒子状态的方式和经典力学中同时用坐标和动量的确定值来描述质点的状态完全不同。这种差别来源于微观粒子的波粒二象性。波函数的统计解释是波粒二象性的一个表现,微观粒子的波粒二象性还通过量子力学中关于状态的一个基本原理一态叠加原理表现出来。
在经典物理中,声波和光波都遵从叠加原理:两个可能的波动过程 和 ,线性叠加的结果 也是一个可能的波动过程,如图所示双缝衍射实验。光学中的惠更斯原理就是这样的一个原理:在空间任意一点P的光波强度可以由前一时刻波前上所有各点传播出来的光波在P点线性叠加起来而得出。利用这个原理可以解释光的干涉、衍射现象。
热心网友
时间:2022-06-26 00:17
在物理学与系统理论中,叠加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。” 从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。 用数学的话讲,对所有线性系统 F(x)=y,其中 x 是某种程度上的刺激(输入)而 y 是某种反应(输出),刺激的叠加(即“和”)得出分别反应的叠加:在数学中,这个性质更常被叫做可加性。在绝大多数实际情形中,F 的可加性表明它是一个线性映射,也叫做一个线性函数或线性算子。 此原理在物理学与工程学中有许多应用,因许多物理系统可以线性系统为模型。例如,一个梁可作为一个线性系统,其中输入刺激是在梁上的结构荷重,而输出反应是梁的挠度。因为物理系统通常只是近似线性的,叠加原理往往只是真实物理现象的近似;从这里可以察知这些系统的操作区域。 叠加原理适用于任何线性系统,包括代数方程、线性微分方程、以及这些形式的方程组。输入与反应可以是数、函数、矢量、矢量场、随时间变化的信号、或任何满足一定公理的其它对象。注意当涉及到矢量与矢量场时,叠加理解为矢量和。
与傅里叶分析及类似方法的关系
通过将线性系统中一个非常一般的刺激写成一些特定的简单形式的刺激之叠加,利用叠加原理,通常使反应变得容易计算。
例如,在傅里叶分析中,刺激写成无穷多个正弦波的叠加。由于叠加原理,每个这样的正弦波可单独分析,各自的反应可计算出来。(反应自己也是一个正弦波,与刺激的频率相同,但一般有不同的振幅与相位。)根据叠加原理,原来的刺激的反应是所有单独的正弦波反应之总和(或积分)。
另一个常见的例子,在格林函数分析中,刺激写成无穷多个脉冲函数的叠加,而反应是脉冲响应的叠加。
傅里叶分析对波是常用的。例如,在电磁理论中,通常的光描述为平面波(固定频率、极化与方向的波)的叠加。只要叠加原理成立(通常成立但未必一定;见非线性光学),任何光波的行为可理解为这些简单平面波的行为之叠加。
在波理论中的应用
波通常描述为通过空间与时间的某个参数的变化,例如,水波中的高度,声波中的压强,或光波中的电磁场。这个参数的值称为波的振幅,而波本身是确定在每一点的振幅的一个函数。