发布网友
发布时间:2022-05-01 14:03
共1个回答
热心网友
时间:2022-07-05 21:34
任德贻煤岩学和煤地球化学论文选辑
燃煤引起的环境污染日趋严重,随着综合机械化采煤的发展,细粒级煤产量日增,传统的选煤工艺对于-0.5mm高硫煤脱硫难度很大,而高梯度磁选(HGMS)与浮选等方法相结合的多工艺联合脱硫是很有潜力的新技术[1]。为此,我们对四川南桐等矿区的煤和黄铁矿进行了比磁化率测试,为HGMS脱黄铁矿硫的特性提供参考依据。
一、实验条件
样品磁化率测试是在英国牛津公司的振动样品磁强计(VSM)上进行的。具体的样品质量磁化率(χ0)由下面关系所确定:χ0=m/(m'×H),其单位为emu·g-1;H为所用磁场强度(T);m'为样品的质量(g);m为样品的磁矩(emu)。VSM的参数及实验条件:将厚为<4mm、长<20mm和宽<10mm的块状样品(通常大小为3mm×8mm×10mm,重为(0.3±0.1)g)贴在杆状样品架上,磁场0~±4T,均匀度为10-3,背景噪音小于5×10-6emu。测试范围±0.0003至300emu,温度为(300±0.1)K。磁化率灵敏度10-11emu·g-1,仪器精度1%。
二、结果与分析
实验分四组样品测试,目的是探讨不同形态晶体黄铁矿,不同类型、产地和煤层中的黄铁矿,不同煤级和煤岩成分的煤等磁性特性和差异性。
1.不同形态及晶形的黄铁矿与质量磁化率(χ0)的关系
由表1所示,煤中的12个不同形态晶形的黄铁矿的质量磁化率(χ0)有规律可循,最大χmax=58.4×10-7emu·g-1,最小χmin=1.11×10-7emu·g-1,平均χ=13.7×10-7,χmax/χmin=52。总体上,随序列逐渐增加,晶形变差,其磁化率逐增。不同期次脉状黄铁矿,其磁化率不一样。
2.矿床黄铁矿的测试
第二组测试数据是非煤系矿床黄铁矿,有江西九江城门山矽卡岩型黄铁矿,湖南耒阳上堡热液矿床中黄铁矿,它们的磁距-磁场强度(m-H)曲线由图1所示。煤中黄铁矿的磁化率与它们的磁化强度呈正比,m-H曲线为一直线,质量磁化率为一常数。而热液型及矽卡岩型矿床黄铁矿则随场强的变化而变化。由热液型黄铁矿的m-H曲线可知,其黄铁矿中混有少量强的逆磁性物质。矽卡岩黄铁矿的m-H曲线不同于皆为顺磁性的煤中黄铁矿的m-H曲线,说明矽卡岩黄铁矿含有少量的铁磁性物质,以高的磁化率为特征。由计算表明煤中黄铁矿χ0的算术平均值大约为矽卡岩型矿床黄铁矿的5倍,是热液型矿床黄铁矿的40倍(绝对值)。由此特性说明煤中黄铁矿比矿床黄铁矿更有利于HGMS脱硫。
表1 各种黄铁矿和煤的磁化率结果表
注:a)磁饱合率;b)L—褐煤;SB—次烟煤;B—烟煤;A—无烟煤;MA—高阶无烟煤。
图1 不同类型黄铁矿的磁距场强m-H曲线
3.不同地区不同煤层中黄铁矿的χ0
无论是褐煤还是无烟煤,不同煤层中黄铁矿的磁化率与它们的形态很有关系,而与煤级并无显著关系,即有晶体<结核、砂晶。纵观煤中黄铁矿的磁化率,存在两类众数:一类为χ0=(11~12)×10-7emu·g-1,它们多为结核、脉状、层状砂晶,是煤中分布最多的黄铁矿类型;二类为磁化率χ0约为(1.1~1.7)×10-7emu·g-1,它们多为结晶好的晶体及Ⅱ类脉状黄铁矿。总之,煤中黄铁矿的磁性是在(1.11~58.4)×10-7emu·g-1范围内。
4.煤的磁性研究
选择10个不同煤级、不同煤岩成分的煤所测得的磁化率如表1。从亮褐煤到烟煤,以至无烟煤和高阶无烟煤均具逆磁性,而煤的不同煤岩成分的磁性差别不大,而煤及其顶底板中黄铁矿的磁化率都为正值。由此,HGMS对不同煤级煤的脱硫都是有利的,且对煤的不同煤岩成分并无分选效益。
三、机理分析
磁性的起因与原子结构和原子间的相互作用有关[2]。理论上黄铁矿分子式应为FeS2,Fe∶S=1∶2。然而自然界中硫铁原子比并非等于标准的2,常混有其他元素或类质同象置换而使成分结构及物性改变。因此要了解其磁性的原因,必须了解其化学组成与结构。
中子活化分析和电子探针二法分析表明,煤中黄铁矿的伴生元素主要有稀土,Th,Ti,V,Mo,Sr,Ba,Cu,As,Sb,Se,Mn,Co,Ni,Cr,Br,Cl,I,Ca,Mg,Na,Al及Sc等,相关分析及点群分析中,磁化率χ0与Mn,V及∑1=(Mn+Co+Ni+Cr),Ba,Mg,Ca及∑2=(Ca+Mg+Al+Na)为一群元素组合相,它们与χ0都呈正相关,Mn,V,∑1,∑2,Mg,Ca,Ba与χ0的相关系数分别为r=0.94,0.86,0.84,0.84,0.92,0.88,0.56,多为显著相关。煤中黄铁矿,随晶形的变差,伴生元素含量增加,磁化率增大,尤其与Mn,V,Mg,Ca等元素含量的增加而增大。
表2 黄铁矿中伴生元素的磁性
低自旋状态的Fe2+不显磁性,硫原子也不显磁性,其磁化率为-0.485[3],那么由Fe2+和S组成的黄铁矿FeS2理应不显磁性,而黄铁矿的磁性应来自所伴生的顺磁性元素。一般铁族、稀土元素和锕系元素等过渡性元素(df轨道)及大多数碱、碱土元素都是顺磁的。设任一元素的含量为ei,其磁化率χei,则该元素在黄铁矿中的磁量为ei·χei。整个黄铁矿磁性则为各元素原子磁性的矢量和,即 ,原子χei分顺磁性χpei和逆磁性χdei。所以可得出理论磁化率χc的计算式为
任德贻煤岩学和煤地球化学论文选辑
现将各测试黄铁矿χ0样中子活化定量分析中杂质含量、顺、逆磁性等44种元素的总含量列于表2中,并参考元素室温磁化率值[3],将各元素的顺、逆性磁化率乘以各自的含量,然后加权平均算出逆磁性及顺磁性磁化率总量。由表2可知,黄铁矿中尤其是煤中黄铁矿———结核、脉状、菊花状、基质状黄铁矿,其伴生元素多,顺磁性亦大。各种黄铁矿的逆磁性元素含量少且差别不大,其逆磁性元素总磁化率小,因此逆磁性杂质对黄铁矿磁化率贡献太小,可忽略不计。而顺磁性杂质的总磁化率含量高,变化明显,因此估算黄铁矿的磁化率χc全由顺磁性杂质磁量所提供。显然表2中不同黄铁矿理论计算所得χc与实测磁化率χ0变化趋势相吻合。相关分析表明它们在a=0.001(n=12)水平上显著相关,相关系数为r=0.91。诚然χc不能近似与χ0相等,其回归方程:χ0=95.11χc-0.27,也就是说黄铁矿磁化率的估算(χ估)可通过下式得出
任德贻煤岩学和煤地球化学论文选辑
此公式的意义在于: ①煤黄铁矿的磁化率主要受杂质多少及其磁性的控制。②纯的煤黄铁矿当无杂质或无顺磁物质时,磁性为负。由此说明,黄铁矿不显磁性有其合理性。
致谢 感谢中国科学院物理研究所国家超导实验室赵忠贤院士为本研究给予了技术上的指导,感谢中国科学院高能物理研究所杨绍晋研究员为样品元素测试提供了方便。
参 考 文 献
[1] Oder R R. Processing and Utilization of High-Sulfur Coals IV ( eds. Dugan P R,Quigley D R,Attia Y A) . Netherland, Amsterdam: Elsevier Science Publishers B V,1991. 491 ~ 502
[2] Tossell J A,Vaughan D L. Theoretical Geochemistry Application of Quantum Mechanics in the Earth and Mineral Sci- ences. New York,Oxford: Oxford University Press Inc,1992. 289 ~ 305
[3] 陈笃行编 . 磁测量基础 . 北京: 机械工业出版社,1985. 52 ~ 60
( 本文由唐跃刚、任德贻、郑建中、郭梦熊、容锡燊、倪泳明合著,原载《科学通报》,1995年第 40 卷第 16 期)