发布网友 发布时间:2022-05-01 10:28
共1个回答
热心网友 时间:2023-02-08 20:21
一、写好数模答卷的重要性(一)评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。(二)答卷是竞赛活动的成绩结晶的书面形式。(三)写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题(一)评阅原则:1、假设的合理性;2、建模的创造性;3、结果的合理性;4、表述的清晰程度。(二)答卷的文章结构 0、摘要 1、问题的叙述,问题的分析等,略 2、模型的假设与符号说明(表) 3、模型的建立(问题分析,公式推导,基本模型,最终或简化模型 等); 4、模型的求解(1)算法设计或选择, 算法思想依据,步骤及实现,计算框图;所采用的软件名称;(2)引用或建立必要的数学命题和定理;(3)求解方案及流程; 5、结果表示,分析与检验,误差分析,模型检验…… 6、模型评价,特点,优缺点,改进方法,推广…… 7、参考文献 8、附录 计算框图 详细图表 ……(三)要重视的问题 0) 摘要。包括:(1)模型的数学归类(在数学上属于什么类型);(2)建模的思想(思路);(3)算法思想(求解思路);(4)建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….);(5)主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。 1) 问题重述。 2) 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。(1)根据题目中条件作出假设(2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意 3) 模型的建立 (1) 基本模型: ①首先要有数学模型:数学公式、方案等;②基本模型,要求 完整,正确,简明; (2) 简化模型 ①要明确说明:简化思想,依据 ②简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 ①数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。 ②能用初等方法解决的、就不用高级方法; ③能用简单方法解决的,就不用复杂方法;④能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。(4)鼓励创新,但要切实,不要离题搞标新立异 数模创新可出现在 ①建模中,模型本身,简化的好方法、好策略等; ②模型求解中; ③结果表示、分析、检验,模型检验; ④推广部分; (5)在问题分析推导过程中,需要注意的问题: 分析:中肯、确切; 术语:专业、内行; 原理、依据:正确、明确; 表述:简明,关键步骤要列出; 忌:外行话,专业术语不明确,表述混乱,冗长。4) 模型求解 (1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。5)结果分析、检验;模型检验及模型修正;结果表示; (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。 结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 ; ①数值结果表示:精心设计表格;可能的话,用图形图表形式; ②求解方案,用图示更好; (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。6)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。7)参考文献8)附录详细的结果,详细的数据表格,可在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: ①模型的正确性、合理性、创新性; ②结果的正确性、合理性; ③文字表述清晰,分析精辟,摘要精彩。三、对分工执笔的同学的要求四.关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据每个量,列出一组还是多组数――要计算一组还是多组数……五.答卷要求的原理 准确――科学性 条理――逻辑性 简洁――数学美 创新――研究、应用目标之一,人才培养需要 实用――建模。实际问题要求。六、建模理念:1. 应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。