spss效度分析结果怎么看
发布网友
发布时间:2022-05-02 05:30
我来回答
共1个回答
热心网友
时间:2023-09-17 09:54
效度分析
效度用于测量题项(定量数据)设计是否合理,通过因子分析(探索性因子分析)方法进行验证;研究人员心中预期着变量与题项对应关系;进行因子分析后,因子(即变量,使用因子分析时称因子)与题项对应关系;二者预期基本一致时,则说明具有良好效度水平.正常情况下,效度分析仅仅针对量表数据,非量表题目比如多选,单选性别之类的题目不能进行效度分析。如果一定想分析效度,建议可使用‘内容效度’,即用文字详细描述问卷设计的过程,用文字的形式描述清楚问卷是做什么,有什么用处,为什么合理,而且有专家认证,这样就说明问卷设计合理有效。
如果用户预期分析项可分为几个方面(变量),则用户可自行设置因子个数(维度个数),如果不设置,系统会以特征根值大于1作为判定标准设定因子个数;
●因子与题项对应关系判断
假设分析题项为10个,预期分为3个因子(维度或变量);因子与题项交叉共得到30个数字,此30个数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个分析项对应行,则有3个”因子载荷系数值”(比如0.765,-0.066,0.093),3个数字绝对值大于0.4,如果其对应因子1,则说明此题项应该划分在因子1下面.如下表所示:
位置,本应该在‘因子3’下面却跑到‘因子1’下面,因而‘分析项1’就属于‘张冠李戴’。针对‘张冠李戴’,一定需要将题目删除重新进行分析。
●效度分析对不合理题项进行删除
共有三种情况; 第一类:如果分析项的共同度值小于0.4,则对应分析项应该作删除处理;第二类:某分析项对应的”因子载荷系数”的绝对值,全部均小于0.4,也需要删除此分析项;第三类:如果某分析项与因子对应关系出现严重偏差,也需要对该分析项进行删除处理(此现象称作‘张冠李戴’).
●效度分析的其余判断指标
特征根值(通常使用旋转后,以大于1作为标准),方差解释率(意义较小),累积方差解释率(通常使用旋转后,以大于50%作为标准),KMO值(大于0.6作为标准),巴特球形值对应的sig值(小于0.01作为标准).
效度分析
效度用于测量题项(定量数据)设计是否合理,通过因子分析(探索性因子分析)方法进行验证;研究人员心中预期着变量与题项对应关系;进行因子分析后,因子(即变量,使用因子分析时称因子)与题项对应关系;二者预期基本一致时,则说明具有良好效度水平.正常情况下,效度分析仅仅针对量表数据,非量表题目比如多选,单选性别之类的题目不能进行效度分析。如果一定想分析效度,建议可使用‘内容效度’,即用文字详细描述问卷设计的过程,用文字的形式描述清楚问卷是做什么,有什么用处,为什么合理,而且有专家认证,这样就说明问卷设计合理有效。
如果用户预期分析项可分为几个方面(变量),则用户可自行设置因子个数(维度个数),如果不设置,系统会以特征根值大于1作为判定标准设定因子个数;
●因子与题项对应关系判断
假设分析题项为10个,预期分为3个因子(维度或变量);因子与题项交叉共得到30个数字,此30个数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个分析项对应行,则有3个”因子载荷系数值”(比如0.765,-0.066,0.093),3个数字绝对值大于0.4,如果其对应因子1