发布网友 发布时间:2023-09-15 19:14
共5个回答
热心网友 时间:2024-12-03 13:48
令u = tan(x / 2),dx = 2 / (1+u²)
sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²)
∫ dx / (sinx + cosx)
= ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】
= 2∫ / (-u² + 2u + 1)
= 2∫ / [2 - (u - 1)²]
= 2∫ dy / (2 - y²),y=u - 1
= (1 / 2√2)ln|(y + √2) / (y - √2)| + C
= (1 / 2√2)ln|(u - 1 + √2) / (y - 1 - √2)| + C
= (1 / 2√2)ln|[tan(x / 2) - 1 + √2] / [tan(x / 2) - 1 - √2)| + C
= √2arctanh【[tan(x / 2) - 1] / √2】+ C
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、 根式代换法,
2、 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
链式法则是一种最有效的微分方法,自然也是最有效的积分方法。
热心网友 时间:2024-12-03 13:48
这里用了两种方法,求的是定积分。要求不定积分,+c就好了。
热心网友 时间:2024-12-03 13:48
简单计算一下即可,答案如图所示
热心网友 时间:2024-12-03 13:49
令u = tan(x / 2),dx = 2 / (1+u²)
sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²)
∫ dx / (sinx + cosx)
= ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】
= 2∫ / (-u² + 2u + 1)
= 2∫ / [2 - (u - 1)²]
= 2∫ dy / (2 - y²),y=u - 1
= (1 / 2√2)ln|(y + √2) / (y - √2)| + C
= (1 / 2√2)ln|(u - 1 + √2) / (y - 1 - √2)| + C
= (1 / 2√2)ln|[tan(x / 2) - 1 + √2] / [tan(x / 2) - 1 - √2)| + C
= √2arctanh【[tan(x / 2) - 1] / √2】+ C
解:
∫cosx/(1+sinx) dx
=∫1/(1+sinx) d(sinx+1)
=ln(1+sinx)+C
热心网友 时间:2024-12-03 13:50
①sinx+cosx=√2sin(x+π╱4)