发布网友 发布时间:2023-07-30 10:15
共1个回答
热心网友 时间:2024-11-30 06:51
arctanx+arctan1/x=π/2,是一个恒等式。arctanx和arctan1/x的关系是arctanx+arctan(1/x)=π/2。设a=arctanx,b=arctan(1/x),则x=tana,1/x=tanb,即tana=1/(tanb)=cotb=tan(π/2-b),∴a=π/2-b,即a+b=π/2。数学反三角函数中arctanⅹ和atan1/x表示的两个角是两个角之和等于π/2或一π/2。arctanx定义说明...
数学问题 arctanx和arctan1/x什么关系arctanx + arctan(1/x) = π/2 设a=arctanx,b=arctan(1/x)则 x = tana,1/x = tanb 即 tana = 1/(tanb) = cotb = tan(π/2 -b)∴ a = π/2 -b 即a+b = π/2
证明恒等式:arctanx+arctan1/x=π/2(x>0)设f(x)=arctanx+arctan1/x (x>0)f'(x)=1/(1+x²)+1/[1+(1/x)²]×(1/x)'=1/(1+x²)+1/[1+(1/x)²]×(-1/x²)=1/(1+x²)-1/(1+x²)=0 所以f(x)在x>0上为常数函数 在x>0上任意取一个x,特别地 ,令x=1,f(x...
arctanx+arctan1/x=π/2arctanx+arctan1/x=π/2,是一个恒等式。证明如下:用到的公式:tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(arctana)=a 所以有tan(arctanx+arctan1/x)=(tanarctanx+tanarctan1/x)/(1-tanarctanx*tanarctan1/x)=(x+1/x)/(1-x*1/x)=(x+1/x)/0 =无穷大 =tanπ/2 ...
求证恒等式:arctanX+arctan1/X=派/2tan(pi/2-a)=cota=1/tana 令x=tana,所以有 arctan[tan(pi/2-a)]=arctan(cota)=arctan(1/tana) pi/2-a=arctan(1/x) 又tana=x,所以a=arctanx 所以arctanx+arctan(1/x)=pi/2 【这里pi是派】
arctanx+arctan1/x等于什么? 恒等嘛?arctanx+arctan1/x=π/2,恒等。证明方法:设f(x)=arctanx+arctan(1/x)则求导之后:f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)'=1/(1+x^2) + [-1/(1+x^2)]=0 因此f(x)是一个常数,令x=1代入,则f(x)=f(1)=arctan1+arctan1=π/4 +π/4 =π/2。
点样证明arctanx+arctan1/x=pi/2点样?画个三角形呀,直角的.设三角形ABC,C为直角,且BC/AC=x 那么arctanx=A,arctan1/x=B,因为A+B=pi/2 所以arctanx+arctan1/x=pi/2 若x是负的,说真的,这个等式是不成立的哦,这里注意一下
为什么在三角函数中, arctanx+ arctan(1/ x)=π/2∴f(x)是一个常数 代入x=1得:f(x)=f(1)=arctan1+arctan1=π/4+π/4 =π/2 即:arctanx+arctan(1/x)=π/2 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半...
点样证明arctanx+arctan1/x=pi/2点样?画个三角形呀,直角的。设三角形ABC,C为直角,且BC/AC=x 那么arctanx=A,arctan1/x=B,因为A+B=pi/2 所以arctanx+arctan1/x=pi/2 若x是负的,说真的,这个等式是不成立的哦,这里注意一下
证明arctanx+arctan1\x=π\2证明过程如下:设f(x)=arctanx+arctan1/x (x>0)f'(x)=1/(1+x²)+1/[1+(1/x)²]×(1/x)'=1/(1+x²)+1/[1+(1/x)²]×(-1/x²)=1/(1+x²)-1/(1+x²)=0 所以f(x)在x>0上为常数函数 在x>0上任意取一个x,特别地 ,...