发布网友 发布时间:2023-07-08 19:10
共1个回答
热心网友 时间:2023-10-24 21:25
圆周率 圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圜率、周等名称。 古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=( 图片参考:edp.ust/previous/math/history/5/5_5/1over7 ,开创了圆周率计算的几何方法(亦称古典方法,或 阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确 到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后 7位的π值(约5世纪下半叶),给出不足近似值 3.1415926和过剩近似值3.1415927,还得到两个近似 分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工 程师安托尼斯的著作中,欧洲称之为安托尼斯率。 *** 数学家卡西在15世纪初求得圆周率17位精确小数 值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力, 于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 1579年法国数学家韦达给出π的第一个解析表达式 图片参考:edp.ust/previous/math/history/5/5_5/Image5_5_12b 此后,无穷乘积式、无穷连分数、无穷级数等各种π 值表达式纷纷出现,π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗 格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首 次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研 究人员用克雷-2型和IBM-VF型巨型电子计算机计算出 π值小数点后4.8亿位数,后又继续算到小数点后10.1 亿位数,创下新的纪录。 除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数 。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是 超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题。还有人对π的特征及与其它数字的联系 进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。