发布网友 发布时间:2022-04-25 21:01
共2个回答
懂视网 时间:2022-04-29 21:36
1、hive开放jdbc接口,开发需要导入jar如下
commons-logging-1.0.4.jar
hadoop-common-2.6.0.jar
hive_exec.jar
hive_jdbc.jar
hive_metastore.jar
hive_service.jar
httpclient-4.2.5.jar
httpcore-4.2.5.jar
libfb303.jar
log4j-1.2.16.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
2、开发的实例程序如下
package com.gw; import java.io.InputStream; import java.net.URL; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; import java.util.Properties; import org.apache.log4j.Logger; /** * @author wangweifeng * @description:通过jdbc连接到hive实现如下操作:建表、删表、对表进行描述、 从本地文件系统导入数据、执行查询 * */ public class HiveJdbcClient { public static Statement jdbcStatemt; private static ResultSet res = null; private static final Logger log = Logger.getLogger(HiveJdbcClient.class); // 采用单例模式创建一个jdbcstatemt public static Statement getJdbcStatemt() throws Exception { if (jdbcStatemt == null) { Properties prop = new Properties(); URL url = Thread.currentThread().getContextClassLoader() .getResource("config.properties"); InputStream in = url.openStream(); prop.load(in); String driverName = prop.getProperty("driverName"); String jdbcUrl = prop.getProperty("jdbcUrl"); String userName = prop.getProperty("userName"); String password = prop.getProperty("password"); // 1、使用CLASS 类加载驱动程序 Class.forName(driverName); // 2、连接数据库 Connection con = DriverManager.getConnection(jdbcUrl, userName, password); // 3、Statement 接口需要通过Connection 接口进行实例化操作 jdbcStatemt = con.createStatement(); } return jdbcStatemt; } // 关闭jdbc连接 public static void closeStatement() throws Exception { if (!jdbcStatemt.isClosed()) { jdbcStatemt.close(); } } public static void main(String[] args) { try { jdbcStatemt = getJdbcStatemt(); } catch (Exception e) { e.printStackTrace(); } String Hql = ""; /* String tableName = "DemiClass"; */ /* String tableName = "DemiDate"; */ /* String tableName = "DemiDept"; */ String tableName = "tXsXsMxFactA"; String rowTerminated = " ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,‘ "; String lineTerminated = " LINES TERMINATED BY ‘ ‘ "; // 1、删除表 Hql = "DROP TABLE IF EXISTS " + tableName; try { jdbcStatemt.execute(Hql); System.out.println("表删除成功!"); } catch (SQLException e1) { System.out.println("表删除失败!"); e1.printStackTrace(); } // 2、创建表 /* * Hql = "CREATE EXTERNAL TABLE " + tableName + * "(clscode STRING,cty_big STRING,cty_sml STRING) " + rowTerminated + * lineTerminated; */ /* * Hql = "CREATE EXTERNAL TABLE " + tableName + * "(XSDATE STRING,YEAR STRING,MONTH STRING,DAY STRING) " + * rowTerminated + lineTerminated; */ /* * Hql = "CREATE EXTERNAL TABLE " + tableName + * "(DEPCODE STRING,BRANCH_NAM STRING,GROUP_NAME STRING,DEPNAME STRING) " * + rowTerminated + lineTerminated; */ Hql = "CREATE EXTERNAL TABLE " + tableName + "(CLSCODE STRING,DEPCODE STRING,XSDATE STRING,JXCOUNT INT,DXCOUNT INT,LXCOUNT INT,JXTOTAL DOUBLE,DXTOTAL DOUBLE,LXTOTAL DOUBLE) " + rowTerminated + lineTerminated; try { jdbcStatemt.execute(Hql); System.out.println("表创建成功!"); } catch (SQLException e) { System.out.println("表创建失败!"); e.printStackTrace(); } // 3、执行“show tables”操作 Hql = " SHOW TABLES ‘" + tableName + "‘"; System.out.println("Running:" + Hql); try { res = jdbcStatemt.executeQuery(Hql); if (res.next()) { System.out.println(res.getString(1)); } } catch (SQLException e) { e.printStackTrace(); } // 4、执行“describe table”操作 Hql = " DESCRIBE " + tableName; System.out.println("Running:" + Hql); try { res = jdbcStatemt.executeQuery(Hql); System.out.println("执行" + Hql + " 运行结果:"); while (res.next()) { System.out.println(res.getString(1) + " " + res.getString(2)); } } catch (SQLException e) { e.printStackTrace(); } // 5、执行“load data into table”操作 /* * String filePath = * "/home/Hadoop/Desktop/createTable_And_Data/DemiClass.csv"; Hql = * "LOAD DATA LOCAL INPATH ‘" + filePath + * "‘ OVERWRITE INTO TABLE DemiClass"; */ /* * String filePath = * "/home/Hadoop/Desktop/createTable_And_Data/DemiDate.csv"; Hql = * "LOAD DATA LOCAL INPATH ‘" + filePath+ * "‘ OVERWRITE INTO TABLE DemiDate"; */ /* * String filePath = * "/home/Hadoop/Desktop/createTable_And_Data/DemiDept.csv"; Hql = * "LOAD DATA LOCAL INPATH ‘" + filePath+ * "‘ OVERWRITE INTO TABLE DemiDept"; */ String filePath = "/home/Hadoop/Desktop/createTable_And_Data/tXsXsMxFactA.csv"; Hql = "LOAD DATA LOCAL INPATH ‘" + filePath + "‘ OVERWRITE INTO TABLE tXsXsMxFactA"; System.out.println("Running:" + Hql); try { jdbcStatemt.executeQuery(Hql); System.out.println("数据导入成功!"); } catch (Exception SQLException) { System.out.println("bug!"); } // 6、执行“select * query”操作 // 执行“select * query”操作 Hql = "SELECT * FROM " + tableName; System.out.println("Running:" + Hql); try { res = jdbcStatemt.executeQuery(Hql); System.out.println("执行“select * query”运行结果:"); while (res.next()) { /* * System.out.println(res.getInt(1) + " " + res.getString(2) + * " " + res.getString(3)); */ /* * System.out.println(res.getString(1) + " " + res.getString(2) * + " " + res.getString(3) + " " + res.getString(4)); */ System.out.println(res.getString(1) + " " + res.getString(2) + " " + res.getString(3) + " " + res.getInt(4) + " " + res.getInt(5) + " " + res.getInt(6) + " " + res.getDouble(7) + " " + res.getDouble(8) + " " + res.getDouble(9) + " "); } } catch (SQLException e) { e.printStackTrace(); } // 7、执行一个连接操作,查找某一天,某个部门, Hql = " select dd.XSDATE ,ddp.BRANCH_NAM, dc.CTY_BIG, fac.DXCOUNT, fac.DXTOTAL from tXsXsMxFactA fac join DemiClass dc on (fac.CLSCODE = dc.CLSCODE)" + "join DemiDate dd on (fac.XSDATE = dd.XSDATE) join DemiDept ddp on (fac.DEPCODE = ddp.DEPCODE) WHERE dd.XSDATE BETWEEN ‘2004-04-27‘ AND ‘2004-05-20‘"; try { res = jdbcStatemt.executeQuery(Hql); while (res.next()) { System.out.println(res.getString(1) + " " + res.getString(2) + " " + res.getString(3) + " " + res.getInt(4) + " " + res.getDouble(5)); } } catch (Exception e) { e.printStackTrace(); } try { closeStatement(); } catch (Exception e) { e.printStackTrace(); } } } |
Hive中jdbc接口
标签:
热心网友 时间:2022-04-29 18:44
Hive是基于Hadoop平台的数仓工具,具有海量数据存储、水平可扩展、离线批量处理的优点,解决了传统关系型数仓不能支持海量数据存储、水平可扩展性差等问题,但是由于Hive数据存储和数据处理是依赖于HDFS和MapRece,因此在Hive进行数据离线批量处理时,需将查询语言先转换成MR任务,由MR批量处理返回结果,所以Hive没法满足数据实时查询分析的需求。