发布网友 发布时间:2023-09-18 06:52
共1个回答
热心网友 时间:2023-09-21 04:49
判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。
设有一直线l与面S上两条相交直线AB、CD都垂直,则l⊥面S
假设l不垂直于面S,则要么l∥S,要么斜交于S且夹角不等于90。
当l∥S时,则l不可能与AB和CD都垂直。这是因为当l⊥AB时,过l任意作一个平面R与S交于m,则由线面平行的性质可知m∥l
∴m⊥AB
又∵l⊥CD
∴m⊥CD
∴AB∥CD,与已知条件矛盾。
当l斜交S时,过交点在S内作一直线n⊥l,则n和l构成一个新的平面T,且T和S斜交(若T⊥S,则n是两平面交线。由面面垂直的性质可知l⊥S,与l斜交S矛盾)。
∵l⊥AB
∴AB∥n
∵l⊥CD
∴CD∥n
∴AB∥CD,与已知条件矛盾。
综上,l⊥S
扩展资料
性质:已知平面α和一点P,求证过P垂直于α的直线有且只有一条。
当P在平面外时,假设过P有两条直线m、n都与α垂直,不妨设垂足为M、N。由于m∩n=P,那么m和n确定一个平面β。不难证明α∩β=MN。
∵m⊥α,n⊥α
∴m⊥MN,n⊥MN。这样一来,在β内就有PM、PN与MN都垂直,与平面内的垂线公理(其实是定理,因为可以依靠欧式几何的公理证明)矛盾。
类似地可证明当P在平面上时也能推出矛盾。
参考资料来源:百度百科-线面垂直