发布网友 发布时间:2023-09-07 06:22
共1个回答
热心网友 时间:2023-09-13 23:10
三维列向量就是一个三行一列的矩阵,它的秩不超过列数,也就是小于等于1。
根据向量组的秩可以推出一些线性代数中比较有用的定理:
向量组α1,α2,···,αs线性无关等价于R{α1,α2,···,αs}=s。
若向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,则R{α1,α2,···,αs}小于等于R{β1,β2,···,βt}。
等价的向量组具有相等的秩。
若向量组α1,α2,···,αs线性无关,且可被向量组β1,β2,···,βt线性表出,则s小于等于t。
向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,且s>t,则α1,α2,···,αs线性相关。
任意n+1个n维向量线性相关。
扩展资料:
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。
由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。向量a称为点P的位置向量。
在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量a。
由空间基本定理知,有且只有一组实数(x,y,z),使得a=ix+jy+kz,因此把实数对(x,y,z)叫做向量a的坐标,记作a=(x,y,z)。这就是向量a的坐标表示。其中(x,y,z),就是点P的坐标。向量a称为点P的位置向量。
参考资料来源:百度百科-向量组的秩